\batchmode \documentclass[11pt,titlepage]{article} \RequirePackage{ifthen} \usepackage{amsmath,graphicx} \usepackage[dvips]{color} \pagecolor[gray]{.7} \usepackage[]{inputenc} \makeatletter \makeatletter \count@=\the\catcode`\_ \catcode`\_=8 \newenvironment{tex2html_wrap}{}{}% \catcode`\<=12\catcode`\_=\count@ \newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}% \newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}% \expandafter\renewcommand\csname #1\endcsname}% \newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}% \let\newedcommand\renewedcommand \let\renewedenvironment\newedenvironment \makeatother \let\mathon=$ \let\mathoff=$ \ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi \newbox\sizebox \setlength{\hoffset}{0pt}\setlength{\voffset}{0pt} \addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt} \addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt} \addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt} \addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt} \setlength{\textwidth}{349pt} \newwrite\lthtmlwrite \makeatletter \let\realnormalsize=\normalsize \global\topskip=2sp \def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float \def\@float{\let\@savefreelist\@freelist\real@float} \def\liih@math{\ifmmode$\else\bad@math\fi} \def\end@float{\realend@float\global\let\@freelist\@savefreelist} \let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float \let\@largefloatcheck=\relax \let\if@boxedmulticols=\iftrue \def\@dbflt{\let\@savefreelist\@freelist\real@dbflt} \def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}% \def\phantompar{\csname par\endcsname}\normalsize}% \def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}% \newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }% \newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }% \newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup % \let\ifinner=\iffalse \let\)\liih@math }% \newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}% \expandafter\box\next\egroup}% \newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}% \newcommand\lthtmllogmath{\lthtmltypeout{l2hSize % :\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}% \newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist \lthtmlmathtype{#1}\lthtmlvboxmathA}% \newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}% \newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup \let\@savefreelist\@freelist \lthtmlhboxmathB}% \newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}% \newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox \global\let\@freelist\@savefreelist}% \newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}% \newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}% \newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}% \lthtmldisplayA{#1}\let\@eqnnum\relax}% \newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}% \newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB} \newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA \vrule height1.5ex width0pt }% \newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}% \newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}% \newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline} \newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath} \newcommand\lthtmlindisplaymathZ{\egroup % \centerinlinemath\lthtmllogmath\lthtmlsetmath} \def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{% \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{% \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt% \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt% \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\centerinlinemath{% \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1 \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax} \def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill \else\expandafter\vss\fi}% \providecommand{\selectlanguage}[1]{}% \makeatletter \tracingstats = 1 \providecommand{\Eta}{\textrm{H}} \providecommand{\Mu}{\textrm{M}} \providecommand{\Alpha}{\textrm{A}} \providecommand{\Iota}{\textrm{J}} \providecommand{\Nu}{\textrm{N}} \providecommand{\Omicron}{\textrm{O}} \providecommand{\omicron}{\textrm{o}} \providecommand{\Chi}{\textrm{X}} \providecommand{\Beta}{\textrm{B}} \providecommand{\Kappa}{\textrm{K}} \providecommand{\Tau}{\textrm{T}} \providecommand{\Epsilon}{\textrm{E}} \providecommand{\Zeta}{\textrm{Z}} \providecommand{\Rho}{\textrm{R}} \begin{document} \pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}% \makeatletter \if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}% \else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi% \lthtmltypeout{}% \makeatother \setcounter{page}{1} \onecolumn % !!! IMAGES START HERE !!! {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline767}% $ L$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline771}% $ r_2$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} \stepcounter{section} {\newpage\clearpage \lthtmlpictureA{tex2html_wrap463}% \includegraphics[height=5in]{img/variable.ps}% \lthtmlpictureZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay779}% $\displaystyle w$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay780}% $\displaystyle =$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay781}% $\displaystyle r_1$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay783}% $\displaystyle r_2$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay785}% $\displaystyle R$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay787}% $\displaystyle \eta$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay789}% $\displaystyle \varepsilon$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay791}% $\displaystyle N$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlpictureA{tex2html_wrap471}% \includegraphics[height=4in]{img/mainstar.ps}% \lthtmlpictureZ \lthtmlcheckvsize\clearpage} \stepcounter{section} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline799}% $ w_x$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline802}% $ r_1$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline804}% $ R-w+w_x$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline806}% $ (R-w+w_x)(\pi/N - \varepsilon)$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline810}% $ a$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline812}% $ (r_1+w_x)a$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlpictureA{tex2html_wrap489}% \includegraphics[height=5in]{img/starL.ps}% \lthtmlpictureZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline828}% $ x + y$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay829}% $\displaystyle b + z$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay830}% $\displaystyle = (R-w-r_1)\sin{\varepsilon}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay831}% $\displaystyle x$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay832}% $\displaystyle = (r_1+w_x)\tan{\eta}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay833}% $\displaystyle \cos{\eta}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay834}% $\displaystyle = \frac{r_1+w_x}{z}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay835}% $\displaystyle \sin{\eta}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay836}% $\displaystyle = \frac{b}{y}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay838}% $\displaystyle = \frac{(R-w-r_1)\sin{\varepsilon} - \frac{r_1+w_x}{\cos{\eta}}}{y}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay839}% $\displaystyle L = y + x$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay840}% $\displaystyle = (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} - \frac{r_1+w_x}{\cos{\eta}\sin{\eta}} + (r_1+w_x)\tan{\eta}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay841}% $\displaystyle \sin^2{\eta} -1$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay842}% $\displaystyle = -\cos^2{\eta}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay843}% $\displaystyle \tan{\eta}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay844}% $\displaystyle = \frac{1}{\tan{(\frac{\pi}{2}-\eta)}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmldisplayA{displaymath846}% \begin{displaymath}\begin{split} L &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} + (r_1+w_x)\left[ \frac{\sin^2{\eta}-1}{\cos{\eta}\sin{\eta}} \right]\\ &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} + (r_1+w_x)\left[ \frac{-\cos{\eta}}{\sin{\eta}} \right]\\ &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} + (r_1+w_x)\left[ \frac{-1}{\tan{\eta}} \right]\\ &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\ \end{split}\end{displaymath}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlpictureA{tex2html_wrap507}% \includegraphics[height=3in]{img/arc.ps}% \lthtmlpictureZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay856}% $\displaystyle = (r_2-wx)(\frac{\pi}{2}-\eta)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay858}% $\displaystyle x = \frac{r_2-wx}{\tan{\eta}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline862}% $ 0 < w_x < r_2$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmldisplayA{displaymath864}% \begin{displaymath}\begin{split} \frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) + (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\ & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)} + (r_2-w_x)(\frac{\pi}{2}-\eta) \\ & \quad - (r_2-wx)\tan{(\frac{\pi}{2}-\eta)}\\ &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) + (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\ & \quad - (r_1+r_2)\tan{(\frac{\pi}{2}-\eta)} + (r_2-w_x)(\frac{\pi}{2}-\eta)\\ \end{split}\end{displaymath}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay866}% $\displaystyle \frac{\delta S}{\delta w_x} = 2N\left[ \frac{\pi}{N} - \varepsilon + a - \frac{\pi}{2} + \eta \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay868}% $\displaystyle a = \frac{\pi}{2} - \eta + \varepsilon$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay870}% $\displaystyle \frac{\delta S}{\delta w_x} = 2\pi$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} {\newpage\clearpage \lthtmldisplayA{displaymath877}% \begin{displaymath}\begin{split} \frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) + (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\ & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\ \end{split}\end{displaymath}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmldisplayA{displaymath879}% \begin{displaymath}\begin{split} \frac{\delta S}{\delta w_x} &= 2N\left[ \frac{\pi}{N} -\varepsilon + a - \tan{(\frac{\pi}{2} - \eta)} \right]\\ &= 2N\left[ \frac{\pi}{2} - \eta + \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)} \right]\\ \end{split}\end{displaymath}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline881}% $ \eta$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline883}% $ N$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline885}% $ \varepsilon$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay887}% $\displaystyle \frac{\delta S}{\delta w_x} = 0 = \frac{\pi}{2} - \eta + \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay893}% $\displaystyle \eta = \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)} + \frac{\pi}{2}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline901}% $ \pi/N$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline927}% $ \eta < \pi/N$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline929}% $ \varepsilon < \pi/N$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline936}% $ w_x = Y*$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay940}% $\displaystyle \frac{S}{2N} = (R-w+w_x)(\frac{\pi}{N}-\varepsilon) + (r_1+w_x)\left[ \varepsilon + \arcsin{(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}}) \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmldisplayA{displaymath942}% \begin{displaymath}\begin{split} \frac{\delta S}{\delta w_x} &= 2N \biggl[ \frac{\pi}{N} + \arcsin{\biggl(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}\biggr)} - \\ &\quad \frac{w_x(R-w-r_1)\sin{\varepsilon}}{(r_1+w_x)^2\sqrt{1-\frac{(R-w-r_1)^2\sin^2{\varepsilon}}{(r_1+w_x)^2}}} \biggr]\\ \end{split}\end{displaymath}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay944}% $\displaystyle Y* = (R-w-r_1)\frac{\sin{\varepsilon}}{\cos{\eta}} - r_1 = w$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay946}% $\displaystyle \sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline950}% $ w$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay965}% $\displaystyle c^2 = a^2 + b^2 - 2ab\cos{\theta}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmldisplayA{displaymath967}% \begin{displaymath}\begin{split} \frac{S}{2N} = (r_1+w_x) \biggl[ & \varepsilon + \arcsin{\biggl(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}\biggr)} - \pi\\ & \quad + \arccos{\biggl(\frac{(r_1+w_x)^2+(R-r_1-w)^2-R^2}{2(r_1+w_x)(R-r_1-w)}\biggr)} \biggr]\\ \end{split}\end{displaymath}% \lthtmldisplayZ \lthtmlcheckvsize\clearpage} \stepcounter{section} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline970}% $ 3 inch$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline984}% $ N=6$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline986}% $ \eta > \pi/N$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay988}% $\displaystyle N = 6$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay990}% $\displaystyle \eta = 33.53 deg$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay992}% $\displaystyle \varepsilon = 30 deg$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline998}% $ r_1 = 1/16 in$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay1004}% $\displaystyle w = 0.500$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlpictureA{tex2html_wrap617}% \includegraphics[]{img/res.ps}% \lthtmlpictureZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlpictureA{tex2html_wrap625}% \includegraphics[height=4in]{img/perimeter.ps}% \lthtmlpictureZ \lthtmlcheckvsize\clearpage} \stepcounter{section} \end{document}