Based on the original Rocket Workbench on SourceForge in CVS at: https://sourceforge.net/projects/rocketworkbench
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

291 lines
11 KiB

  1. \documentclass[10pt]{article}
  2. \usepackage{vmargin}
  3. \usepackage{amsmath}
  4. \newcommand{\er}{\vec{e}_r}
  5. \newcommand{\el}{\vec{e}_\lambda}
  6. \newcommand{\eu}{\vec{e}_\mu}
  7. \begin{document}
  8. \section{Inertial acceleration of the vehicle mass center in body
  9. reference frame}
  10. Generally, the absolute acceleration of a particle $A$ in a moving
  11. reference frame of center B is:
  12. $$\vec{a}_A = \vec{a}_B + \vec{\alpha}\times\vec{r} +
  13. \vec{\omega}\times(\vec{\omega}\times\vec{r})
  14. +2\vec{\omega}\times\vec{v}_{rel} + \vec{a}_{rel}$$
  15. Choosing an earth centered reference frame with constant angular
  16. velocity ($\vec{\omega}^E$) and no acceleration yield to the simpler form
  17. $$\vec{a}_{A_E} = \vec{\omega}^E_E\times(\vec{\omega}^E_E\times\vec{r}^E_E)
  18. +2\vec{\omega}^E_E\times\vec{v}^{rel}_E + \vec{a}^{rel}_E$$
  19. where the subscript $E$ indicate that the vector are expressed in the
  20. earth reference frame.
  21. Transforming this vectorial notation to matrix notation and noting
  22. that the angular velocity of $F_B$ relative to $F_E$ is
  23. $\vec{\omega}^B - \vec{\omega}^E$ yield to:
  24. $$\vec{a}_{A_E} = \tilde{\omega}^E_E\tilde{\omega}^E_E\vec{r}^E_E
  25. +2\tilde{\omega}^E_E\vec{v}^{rel}_E + \vec{a}^{rel}_E$$
  26. We could now expressed this equation in term of component in the body
  27. fixed reference frame.
  28. $$\vec{a}_{A_B} = L_{BE}\vec{a}_{A_E} =
  29. L_{BE}(\tilde{\omega}^E_E\tilde{\omega}^E_E\vec{r}^E_E
  30. +2\tilde{\omega}^E_E\vec{v}^{rel}_E + \vec{a}^{rel}_E)$$
  31. $$ = L_{BE}\tilde{\omega}^E_E\tilde{\omega}^E_E\vec{r}^E_E +
  32. 2L_{BE}\tilde{\omega}^E_E\vec{v}^{rel}_E + (\tilde{\omega}^B -
  33. \tilde{\omega}^E)_B\vec{v}^{rel}_B + \vec{a}^{rel}_B$$
  34. We could then transform
  35. $$L_{BE}\tilde{\omega}^E_E\vec{v}^{rel}_E = (L_{BE}\tilde{\omega}^E_E
  36. L_{EB})(L_{BE}\vec{v}^{rel}_E) = \tilde{\omega}^E_B\vec{v}^{rel}_B$$
  37. and
  38. $$L_{BE}\tilde{\omega}^E_E\tilde{\omega}^E_E\vec{r}^E_E =
  39. (L_{BE}\tilde{\omega}^E_E L_{EB})(L_{BE}\tilde{\omega}^E_E
  40. L_{EB})(L_{BE}\vec{r}^E_E) =
  41. \tilde{\omega}^E_B\tilde{\omega}^E_B\vec{r}^E_B$$
  42. We now have
  43. $$\vec{a}_{A_B} = \vec{a}^{rel}_B + (\tilde{\omega}^B -
  44. \tilde{\omega}^E)_B\vec{v}^E_B +
  45. \tilde{\omega}^E_B\tilde{\omega}^E_B\vec{r}^E_B +
  46. 2\tilde{\omega}^E_B\vec{v}^{rel}_B$$
  47. which simplify to
  48. $$\vec{a}_{A_B} = \vec{a}^{rel}_B + (\tilde{\omega}^B +
  49. \tilde{\omega}^E)_B\vec{v}^E_B +
  50. \tilde{\omega}^E_B\tilde{\omega}^E_B\vec{r}^E_B$$
  51. Defining vector component in $F_B$
  52. $$\vec{v}^E_B = \begin{bmatrix}u\\v\\w\end{bmatrix}$$
  53. $$\vec{\omega}^B_B = \begin{bmatrix}p\\q\\r\end{bmatrix}$$
  54. $$\vec{\omega}^E_B = \begin{bmatrix}p^E_B\\q^E_B\\r^E_B\end{bmatrix} =
  55. L_{BV}\begin{pmatrix}\cos{\lambda}\\0\\-\sin{\lambda}\end{pmatrix}\omega^E$$
  56. and matrix notation of angular velocity
  57. $$\tilde{\omega}^B_B =
  58. \begin{bmatrix}0&-r&q\\r&0&-p\\q&p&0\end{bmatrix}$$
  59. $$\tilde{\omega}^E_B =
  60. \begin{bmatrix}0&-r^E_B&q^E_B\\r^E_B&0&-p^E_B\\q^E_B&p^E_B&0\end{bmatrix}$$
  61. \section{Acceleration of vehicle mass center espressed in a spherical
  62. coordinate system relative to rotating earth}
  63. The spherical coordinate system is compose of the three vector
  64. ($\er$, $\el$, $\eu$), where $\er$ point in the direction of the mass
  65. center of the vehicle, $\el$ point in the north direction and is
  66. perpendicular to $\er$, $\eu$ point east and is perpendicular to both
  67. previous vectors. We could also define the direction of $\er$ with two
  68. angle, $\mu$ is the angle between the equatorial projection of $\er$
  69. and a reference meridian on the earth. $\lambda$ is the angle between
  70. $\er$ and the equator. We could then define the relative velocity and
  71. acceleration of the point C relative to earth by:
  72. $$\vec{v}_{rel} = \dot{r}\er + r\dot{\mu}\cos{\lambda}\eu + r\dot{\lambda}\el$$
  73. \begin{align*}
  74. \vec{a}_{rel} = & (\ddot{r} - r\dot{\lambda}^2 -
  75. r\dot{\mu}^2\cos^2{\lambda})\er +\\
  76. & ((2\dot{r}\dot{\mu} + r\ddot{\mu})\cos{\lambda} -
  77. 2r\dot{\mu}\dot{\lambda}\sin{\lambda})\eu +\\
  78. & (2\dot{r}\dot{\lambda} + r\ddot{\lambda} +
  79. r\dot{\mu}^2\sin{\lambda}\cos{\lambda})\el
  80. \end{align*}
  81. We can now derive the inertial velocity and acceleration of C:
  82. \begin{align*}
  83. \vec{v}_C & = \vec{v}_O + \vec{v}_{rel} + \vec{\omega}\times\vec{r}\\
  84. & = \dot{r}\er + r\dot{\mu}\cos{\lambda}\eu +
  85. r\dot{\lambda}\el + \omega\vec{k}\times r\er\\
  86. & = \dot{r}\er + r\cos{\lambda}(\dot{\mu} + \omega)\eu
  87. + r\dot{\lambda}\el
  88. \end{align*}
  89. $$\vec{a}_C = \vec{a}_O + \vec{\alpha}\times\vec{r} +
  90. \vec{\omega}\times(\vec{\omega}\times\vec{r})
  91. +2\vec{\omega}\times\vec{v}_{rel} + \vec{a}_{rel}$$
  92. Each term will be evaluate separatly:
  93. \begin{align*}
  94. \vec{\omega}\times(\vec{\omega}\times\vec{r}) & =
  95. \omega\vec{k}\times(\omega\vec{k}\times r\er)\\
  96. & = \omega\vec{k}\times(\omega r\cos{\lambda}\eu)\\
  97. & = \omega^2r\cos{\lambda}(-\cos{\lambda}\er+\sin{\lambda}\el)\\
  98. & = -\omega^2r\cos^2{\lambda}\er + \omega^2r\cos{\lambda}\sin{\lambda}\el
  99. \end{align*}
  100. \begin{align*}
  101. \vec{\omega}\times\vec{v}_{rel} & = \omega\vec{k}\times(\dot{r}\er +
  102. r\dot{\mu}\cos{\lambda}\eu + r\dot{\lambda}\el)\\
  103. & = \omega\dot{r}\cos{\lambda}\eu + \omega
  104. r\dot{\mu}\cos{\lambda}(-\cos{\lambda}\er + \sin{\lambda}\el) +
  105. \omega r\dot{\lambda}(-\cos{\lambda})\eu\\
  106. & = \omega\cos{\lambda}(\dot{r}-r\dot{\lambda})\eu - \omega
  107. r\dot{\mu}\cos^2{\lambda}\er + \omega r\dot{\mu}\cos{\lambda}\sin{\lambda}\el
  108. \end{align*}
  109. The inertial acceleration of C is then:
  110. \begin{align*}
  111. \vec{a}_C = & (\ddot{r} - r\dot{\lambda}^2 -
  112. r\dot{\mu}^2\cos^2{\lambda} - 2\omega
  113. r\dot{\mu}\cos^2{\lambda} - \omega^2r\cos^2{\lambda})\er\\
  114. & + ((2\dot{r}\dot{\mu} + r\ddot{\mu})\cos{\lambda} -
  115. 2r\dot{\mu}\dot{\lambda}\sin{\lambda}
  116. + 2\omega\cos{\lambda}(\dot{r}-r\dot{\lambda})\eu\\
  117. & + (2\dot{r}\dot{\lambda} + r\ddot{\lambda} +
  118. r\dot{\mu}^2\sin{\lambda}\cos{\lambda} +2\omega
  119. r\dot{\mu}\cos{\lambda}\sin{\lambda} +
  120. \omega^2r\cos{\lambda}\sin{\lambda})\el
  121. \end{align*}
  122. which simplify to:
  123. \begin{align*}
  124. \vec{a}_C = & (\ddot{r} - r\dot{\lambda}^2 -
  125. r(\omega+\dot{\mu})^2\cos^2{\lambda})\er\\
  126. & + ((2\dot{r}\dot{\mu} + r\ddot{\mu})\cos{\lambda} -
  127. 2r\dot{\mu}\dot{\lambda}\sin{\lambda}
  128. + 2\omega\cos{\lambda}(\dot{r}-r\dot{\lambda})\eu\\
  129. & + (2\dot{r}\dot{\lambda} + r\ddot{\lambda} +
  130. r\sin{\lambda}\cos{\lambda}(\omega+\dot{\mu})^2)\el
  131. \end{align*}
  132. We must now project the inertial acceleration from this vehicled
  133. carried frame to the bidy fixed frame with the conversion matrix based
  134. on the euler angle which define the angular position of $F_B$ relative
  135. to $F_V$.
  136. $$L_{BV} = \begin{bmatrix} \cos{\theta}\cos{\psi}&
  137. \cos{\theta}\sin{\psi}& -\sin{\theta}\\
  138. \sin{\phi}\sin{\theta}\cos{\psi}-\cos{\phi}\sin{\psi}&
  139. \sin{\phi}\sin{\theta}\sin{\psi}+\cos{\phi}\cos{\psi}&
  140. \sin{\phi}\cos{\theta}\\
  141. \cos{\phi}\sin{\theta}\cos{\psi}+\sin{\phi}\sin{\psi}&
  142. \cos{\phi}\sin{\theta}\sin{\psi}-\sin{\phi}\cos{\psi}&
  143. \cos{\phi}\cos{\theta}
  144. \end{bmatrix}
  145. $$
  146. \begin{align*}
  147. \vec{a}_{C_B} & = L_{BV}\vec{a}_C\\
  148. & = L_{BV}(\vec{\omega}\times(\vec{\omega}\times\vec{r})
  149. + 2\vec{\omega}\times\vec{v}_{rel} + \vec{a}_{rel})\\
  150. & = L_{BV}\begin{bmatrix}r\cos{\lambda}\sin{\lambda}\\ 0\\
  151. -r\cos^2{\lambda}\end{bmatrix}\omega^2 +
  152. 2\vec{\omega}^E_B\times\vec{v}_{rel_B} +
  153. \vec{a}_{rel_B} + (\vec{\omega}^B -
  154. \vec{\omega}^E)_B\times\vec{v}^E_B \\
  155. & = L_{BV}\begin{bmatrix}r\cos{\lambda}\sin{\lambda}\\ 0\\
  156. -r\cos^2{\lambda}\end{bmatrix}\omega^2 +
  157. \vec{a}_{rel_B} + (\vec{\omega}^B +
  158. \vec{\omega}^E)_B\times\vec{v}^E_B\\
  159. & = \begin{bmatrix}\dot{u}\\\dot{v}\\\dot{w}\end{bmatrix} +
  160. \begin{bmatrix}c_x\\c_y\\c_z\end{bmatrix} +
  161. \begin{bmatrix}(q + q^E_B)w - (r + r^E_B)v\\
  162. (r + r^E_B)u - (p + p^E_B)w\\
  163. (p + p^E_B)v - (q + q^E_B)u\end{bmatrix}
  164. \end{align*}
  165. We will also use the moment equation:
  166. \begin{align*}
  167. L & = I_x\dot{p} - (I_y - I_z)qr\\
  168. M & = I_y\dot{q} - (I_z - I_x)rp\\
  169. N & = I_z\dot{r} - (I_x - I_y)pq
  170. \end{align*}
  171. \section{System of equation}
  172. \subsection{Independant variable}
  173. \begin{align*}
  174. (\phi, \theta, \psi)\quad & \text{Euler angle defining orientation of the
  175. vehicle relative to $F_V$}\\
  176. (u, v, w)\quad & \text{Velocity of the vehicle relative to earth}\\
  177. (p, q, r)\quad & \text{Absolute angle rate}\\
  178. (\lambda, \mu, R)\quad & \text{Position of the rocket relative to earth}\\
  179. (p^E_B, q^E_B, r^E_B)\quad & \text{Earth angular velocity in body axis}\\
  180. (P, Q, R) \quad & \text{Relative angular velocity of body relative ro $F_V$
  181. expressed in $F_B$}
  182. \end{align*}
  183. \subsection{List of equations}
  184. $$X - mg\sin{\theta} = m(\dot{u} + c_x + (q^E_B+q)w - (r^E_B+r)v)$$
  185. $$Y + mg\cos{\theta}\sin{\phi} = m(\dot{v} + c_y + (r^E_B+r)u - (p^E_B+p)w)$$
  186. $$Z + mg\cos{\theta}\cos{\phi} = m(\dot{w} + c_z + (p^E_B+pvw -
  187. (q^E_B+q)u)$$
  188. \begin{align*}
  189. L & = I_x\dot{p} - (I_y - I_z)qr\\
  190. M & = I_y\dot{q} - (I_z - I_x)rp\\
  191. N & = I_z\dot{r} - (I_x - I_y)pq
  192. \end{align*}
  193. $$\begin{bmatrix}\dot{\phi}\\\dot{\theta}\\\dot{\psi}\end{bmatrix} =
  194. \begin{bmatrix}1&\sin{\phi}\tan{\theta}&\cos{\phi}\tan{\theta}\\
  195. 0&\cos{\phi}&-\sin{\phi}\\
  196. 0&\sin{\phi}\sec{\theta}&\cos{\phi}\sec{\theta}\end{bmatrix}
  197. \begin{bmatrix}P\\Q\\R\end{bmatrix}$$
  198. $$\begin{bmatrix}P\\Q\\R\end{bmatrix} =
  199. \begin{bmatrix}p\\q\\r\end{bmatrix} -
  200. L_{BV}\begin{bmatrix}(\omega^E -
  201. \dot{\mu})\cos{\lambda}\\-\dot{\lambda}\\
  202. -(\omega^E + \dot{\mu})\sin{\lambda}\end{bmatrix}$$
  203. $$\begin{bmatrix}r\dot{\lambda}\\r\dot{\mu}\cos{\lambda}\\\dot{r}
  204. \end{bmatrix} = L_{VB}\begin{bmatrix}u\\v\\w\end{bmatrix}$$
  205. $$\vec{\omega}^E_B = \begin{bmatrix}p^E_B\\q^E_B\\r^E_B\end{bmatrix} =
  206. L_{BV}\begin{pmatrix}\cos{\lambda}\\0\\-\sin{\lambda}\end{pmatrix}\omega^E$$
  207. $$L_{VB} = \begin{bmatrix}\cos{\theta}\cos{\psi}&
  208. \sin{\phi}\sin{\theta}\cos{\psi} - \cos{\phi}\sin{\psi}&
  209. \cos{\phi}\sin{\theta}\cos{\psi} + \sin{\phi}\sin{\psi}\\
  210. \cos{\theta}\sin{\psi}&
  211. \sin{\phi}\sin{\theta}\sin{\psi} + \cos{\phi}\cos{\psi}&
  212. \cos{\phi}\sin{\theta}\sin{\psi} - \sin{\phi}\cos{\psi}\\
  213. -\sin{\theta}&
  214. \sin{\phi}\cos{\theta}&
  215. \cos{\phi}\cos{\theta}\end{bmatrix}$$
  216. \end{document}