1282 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
		
		
			
		
	
	
			1282 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| 
								 | 
							
								<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<!--Converted with LaTeX2HTML 99.2beta8 (1.42)
							 | 
						||
| 
								 | 
							
								original version by:  Nikos Drakos, CBLU, University of Leeds
							 | 
						||
| 
								 | 
							
								* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
							 | 
						||
| 
								 | 
							
								* with significant contributions from:
							 | 
						||
| 
								 | 
							
								  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
							 | 
						||
| 
								 | 
							
								<HTML>
							 | 
						||
| 
								 | 
							
								<HEAD>
							 | 
						||
| 
								 | 
							
								<TITLE>Burning analysis of star configuration</TITLE>
							 | 
						||
| 
								 | 
							
								<META NAME="description" CONTENT="Burning analysis of star configuration">
							 | 
						||
| 
								 | 
							
								<META NAME="keywords" CONTENT="star">
							 | 
						||
| 
								 | 
							
								<META NAME="resource-type" CONTENT="document">
							 | 
						||
| 
								 | 
							
								<META NAME="distribution" CONTENT="global">
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
							 | 
						||
| 
								 | 
							
								<META NAME="Generator" CONTENT="LaTeX2HTML v99.2beta8">
							 | 
						||
| 
								 | 
							
								<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<LINK REL="STYLESHEET" HREF="star.css">
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								</HEAD>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<BODY >
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<H1 ALIGN=CENTER>Burning analysis of star configuration</H1>
							 | 
						||
| 
								 | 
							
								<P ALIGN=CENTER><STRONG>Antoine Lefebvre</STRONG></P>
							 | 
						||
| 
								 | 
							
								<P ALIGN=LEFT></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<BR>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<H2><A NAME="SECTION00010000000000000000">
							 | 
						||
| 
								 | 
							
								Contents</A>
							 | 
						||
| 
								 | 
							
								</H2>
							 | 
						||
| 
								 | 
							
								<!--Table of Contents-->
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<UL>
							 | 
						||
| 
								 | 
							
								<LI><A NAME="tex2html19"
							 | 
						||
| 
								 | 
							
								  HREF="star.html">Contents</A>
							 | 
						||
| 
								 | 
							
								<LI><A NAME="tex2html20"
							 | 
						||
| 
								 | 
							
								  HREF="star.html#SECTION00020000000000000000">Introduction</A>
							 | 
						||
| 
								 | 
							
								<LI><A NAME="tex2html21"
							 | 
						||
| 
								 | 
							
								  HREF="star.html#SECTION00030000000000000000">Geometric definition</A>
							 | 
						||
| 
								 | 
							
								<LI><A NAME="tex2html22"
							 | 
						||
| 
								 | 
							
								  HREF="star.html#SECTION00040000000000000000">Analysis</A>
							 | 
						||
| 
								 | 
							
								<UL>
							 | 
						||
| 
								 | 
							
								<LI><A NAME="tex2html23"
							 | 
						||
| 
								 | 
							
								  HREF="star.html#SECTION00041000000000000000">Zone 1</A>
							 | 
						||
| 
								 | 
							
								<LI><A NAME="tex2html24"
							 | 
						||
| 
								 | 
							
								  HREF="star.html#SECTION00042000000000000000">Zone 2</A>
							 | 
						||
| 
								 | 
							
								<LI><A NAME="tex2html25"
							 | 
						||
| 
								 | 
							
								  HREF="star.html#SECTION00043000000000000000">Zone 3</A>
							 | 
						||
| 
								 | 
							
								<LI><A NAME="tex2html26"
							 | 
						||
| 
								 | 
							
								  HREF="star.html#SECTION00044000000000000000">Zone 4</A>
							 | 
						||
| 
								 | 
							
								</UL>
							 | 
						||
| 
								 | 
							
								<LI><A NAME="tex2html27"
							 | 
						||
| 
								 | 
							
								  HREF="star.html#SECTION00050000000000000000">Design example</A>
							 | 
						||
| 
								 | 
							
								<LI><A NAME="tex2html28"
							 | 
						||
| 
								 | 
							
								  HREF="star.html#SECTION00060000000000000000">conclusion</A>
							 | 
						||
| 
								 | 
							
								<LI><A NAME="tex2html29"
							 | 
						||
| 
								 | 
							
								  HREF="star.html#SECTION00070000000000000000">Bibliography</A>
							 | 
						||
| 
								 | 
							
								<LI><A NAME="tex2html30"
							 | 
						||
| 
								 | 
							
								  HREF="star.html#SECTION00080000000000000000">About this document ...</A>
							 | 
						||
| 
								 | 
							
								</UL>
							 | 
						||
| 
								 | 
							
								<!--End of Table of Contents-->
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<H1><A NAME="SECTION00020000000000000000">
							 | 
						||
| 
								 | 
							
								Introduction</A>
							 | 
						||
| 
								 | 
							
								</H1>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The design of solid propellant grain that provide neutral burning
							 | 
						||
| 
								 | 
							
								is important to optimize rocket motor performance. The star
							 | 
						||
| 
								 | 
							
								configuration have been widely used to achieve this goal. In this
							 | 
						||
| 
								 | 
							
								report, I will present an analysis of the burning comportement of star
							 | 
						||
| 
								 | 
							
								shape as well as parameter recommandation to achieve better
							 | 
						||
| 
								 | 
							
								performance.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<H1><A NAME="SECTION00030000000000000000">
							 | 
						||
| 
								 | 
							
								Geometric definition</A>
							 | 
						||
| 
								 | 
							
								</H1>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The star could be characterize by seven independant variable as
							 | 
						||
| 
								 | 
							
								defined in figure <A HREF="star.html#star">2</A>. As every star points are identical,
							 | 
						||
| 
								 | 
							
								only one is necessary for the analysis. 
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><A NAME="variable"></A><A NAME="12"></A>
							 | 
						||
| 
								 | 
							
								<TABLE>
							 | 
						||
| 
								 | 
							
								<CAPTION ALIGN="BOTTOM"><STRONG>Figure 1:</STRONG>
							 | 
						||
| 
								 | 
							
								Geometric definition of star.</CAPTION>
							 | 
						||
| 
								 | 
							
								<TR><TD><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 $\includegraphics[height=5in]{img/variable.ps}$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="498" HEIGHT="401" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img3.gif"
							 | 
						||
| 
								 | 
							
								 ALT="\includegraphics[height=5in]{img/variable.ps}">
							 | 
						||
| 
								 | 
							
								      
							 | 
						||
| 
								 | 
							
								</DIV></TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE>
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="17" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img4.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle w$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img5.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle =$">   Web thickness</TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img6.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle r_1$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img5.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle =$">   Radius</TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img7.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle r_2$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img5.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle =$">   Tip radius</TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img8.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle R$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img5.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle =$">   External radius</TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img9.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \eta$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img5.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle =$">   angle</TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img10.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \varepsilon$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img5.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle =$">   Secant fillet angle</TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img11.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle N$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img5.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle =$">   Number of star points</TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><A NAME="star"></A><A NAME="28"></A>
							 | 
						||
| 
								 | 
							
								<TABLE>
							 | 
						||
| 
								 | 
							
								<CAPTION ALIGN="BOTTOM"><STRONG>Figure 2:</STRONG>
							 | 
						||
| 
								 | 
							
								Burning zone of the star configuration.</CAPTION>
							 | 
						||
| 
								 | 
							
								<TR><TD><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 $\includegraphics[height=4in]{img/mainstar.ps}$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="516" HEIGHT="392" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img12.gif"
							 | 
						||
| 
								 | 
							
								 ALT="\includegraphics[height=4in]{img/mainstar.ps}">
							 | 
						||
| 
								 | 
							
								      
							 | 
						||
| 
								 | 
							
								</DIV></TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE>
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<H1><A NAME="SECTION00040000000000000000">
							 | 
						||
| 
								 | 
							
								Analysis</A>
							 | 
						||
| 
								 | 
							
								</H1>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								In this section, an expression for the perimeter of the star will be
							 | 
						||
| 
								 | 
							
								developp for each burning zone as a function of the web thickness
							 | 
						||
| 
								 | 
							
								burned (<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="25" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img13.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ w_x$">).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<H2><A NAME="SECTION00041000000000000000">
							 | 
						||
| 
								 | 
							
								Zone 1</A>
							 | 
						||
| 
								 | 
							
								</H2>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The perimeter in the zone one could be divide in three
							 | 
						||
| 
								 | 
							
								  sections. Starting by the right, we have the section before the
							 | 
						||
| 
								 | 
							
								  radius <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img14.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ r_1$">, which have a radius equal to <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="94" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img15.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ R-w+w_x$">. The length of
							 | 
						||
| 
								 | 
							
								  this section is then: <!-- MATH
							 | 
						||
| 
								 | 
							
								 $(R-w+w_x)(\pi/N - \varepsilon)$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="185" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img16.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ (R-w+w_x)(\pi/N - \varepsilon)$">.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								Then, we have the perimeter of the arc of initial radius <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img14.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ r_1$">. The
							 | 
						||
| 
								 | 
							
								  angle will remain constant to <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img17.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ a$">. The length is then: <!-- MATH
							 | 
						||
| 
								 | 
							
								 $(r_1+w_x)a$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="85" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img18.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ (r_1+w_x)a$">.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The third section is more complicated. The lenght of the line
							 | 
						||
| 
								 | 
							
								  starting at the end of the radius <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img14.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ r_1$"> and crossing the vertical
							 | 
						||
| 
								 | 
							
								  line will be evaluated first. Then, the perimeter of the radius
							 | 
						||
| 
								 | 
							
								  <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img2.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ r_2$"> will be add to the result, and the length of the line starting
							 | 
						||
| 
								 | 
							
								  at the beginning of the radius will be substract.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><A NAME="len"></A><A NAME="37"></A>
							 | 
						||
| 
								 | 
							
								<TABLE>
							 | 
						||
| 
								 | 
							
								<CAPTION ALIGN="BOTTOM"><STRONG>Figure 3:</STRONG>
							 | 
						||
| 
								 | 
							
								Determination of the length <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img1.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ L$">.</CAPTION>
							 | 
						||
| 
								 | 
							
								<TR><TD><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 $\includegraphics[height=5in]{img/starL.ps}$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="255" HEIGHT="529" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img19.gif"
							 | 
						||
| 
								 | 
							
								 ALT="\includegraphics[height=5in]{img/starL.ps}">
							 | 
						||
| 
								 | 
							
								      
							 | 
						||
| 
								 | 
							
								</DIV></TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE>
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								In order to determine the length, refer to the figure <A HREF="star.html#len">3</A>. The
							 | 
						||
| 
								 | 
							
								  lenght <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img1.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ L$"> we are looking for will be equal <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="45" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img20.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ x + y$">.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img21.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle b + z$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="156" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img22.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle = (R-w-r_1)\sin{\varepsilon}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img23.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle x$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="134" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img24.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle = (r_1+w_x)\tan{\eta}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="40" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img25.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \cos{\eta}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="84" HEIGHT="51" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img26.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle = \frac{r_1+w_x}{z}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="38" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img27.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \sin{\eta}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="36" HEIGHT="56" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img28.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle = \frac{b}{y}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="38" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img27.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \sin{\eta}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="225" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img29.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle = \frac{(R-w-r_1)\sin{\varepsilon} - \frac{r_1+w_x}{\cos{\eta}}}{y}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="80" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img30.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle L = y + x$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="388" HEIGHT="55" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img31.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle = (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} - \frac{r_1+w_x}{\cos{\eta}\sin{\eta}} + (r_1+w_x)\tan{\eta}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								We could now simplify this equation using two trigonometric
							 | 
						||
| 
								 | 
							
								  identity:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="76" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img32.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \sin^2{\eta} -1$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="82" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img33.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle = -\cos^2{\eta}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="RIGHT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="42" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img34.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \tan{\eta}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="LEFT"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="111" HEIGHT="54" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img35.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle = \frac{1}{\tan{(\frac{\pi}{2}-\eta)}}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation}
							 | 
						||
| 
								 | 
							
								\begin{split}
							 | 
						||
| 
								 | 
							
								  L &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} +
							 | 
						||
| 
								 | 
							
								             (r_1+w_x)\left[
							 | 
						||
| 
								 | 
							
								             \frac{\sin^2{\eta}-1}{\cos{\eta}\sin{\eta}} \right]\\
							 | 
						||
| 
								 | 
							
								      &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} + 
							 | 
						||
| 
								 | 
							
								             (r_1+w_x)\left[ \frac{-\cos{\eta}}{\sin{\eta}} \right]\\
							 | 
						||
| 
								 | 
							
								      &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} + 
							 | 
						||
| 
								 | 
							
								             (r_1+w_x)\left[ \frac{-1}{\tan{\eta}} \right]\\
							 | 
						||
| 
								 | 
							
								      &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} - 
							 | 
						||
| 
								 | 
							
								             (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\
							 | 
						||
| 
								 | 
							
								\end{split}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="356" HEIGHT="191" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img36.gif"
							 | 
						||
| 
								 | 
							
								 ALT="\begin{displaymath}\begin{split}L &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta...
							 | 
						||
| 
								 | 
							
								...sin{\eta}} - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\  \end{split}\end{displaymath}"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								(1)</TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								We could now determine the length of the arc and how much we should
							 | 
						||
| 
								 | 
							
								 substract from the length L. Refer to figure <A HREF="star.html#arc">4</A> for the
							 | 
						||
| 
								 | 
							
								 variables.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><A NAME="arc"></A><A NAME="96"></A>
							 | 
						||
| 
								 | 
							
								<TABLE>
							 | 
						||
| 
								 | 
							
								<CAPTION ALIGN="BOTTOM"><STRONG>Figure 4:</STRONG>
							 | 
						||
| 
								 | 
							
								Arc of radius <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img2.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ r_2$">.</CAPTION>
							 | 
						||
| 
								 | 
							
								<TR><TD><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 $\includegraphics[height=3in]{img/arc.ps}$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="201" HEIGHT="283" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img37.gif"
							 | 
						||
| 
								 | 
							
								 ALT="\includegraphics[height=3in]{img/arc.ps}">
							 | 
						||
| 
								 | 
							
								      
							 | 
						||
| 
								 | 
							
								</DIV></TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE>
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{displaymath}
							 | 
						||
| 
								 | 
							
								\text{Arc length} = (r_2-wx)(\frac{\pi}{2}-\eta)
							 | 
						||
| 
								 | 
							
								\end{displaymath}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<P></P><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								Arc length<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="154" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img38.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle = (r_2-wx)(\frac{\pi}{2}-\eta)$">
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{displaymath}
							 | 
						||
| 
								 | 
							
								x = \frac{r_2-wx}{\tan{\eta}}
							 | 
						||
| 
								 | 
							
								\end{displaymath}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<P></P><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="101" HEIGHT="51" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img39.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle x = \frac{r_2-wx}{\tan{\eta}}$">
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								We have now the complete expression of the perimeter of the star as a
							 | 
						||
| 
								 | 
							
								 function of web burned (<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="25" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img13.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ w_x$">) in the zone one. This expression is
							 | 
						||
| 
								 | 
							
								 valid for <!-- MATH
							 | 
						||
| 
								 | 
							
								 $0 < w_x < r_2$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="96" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img40.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ 0 < w_x < r_2$">.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation}
							 | 
						||
| 
								 | 
							
								\begin{split}
							 | 
						||
| 
								 | 
							
								  \frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) +
							 | 
						||
| 
								 | 
							
								                  (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\
							 | 
						||
| 
								 | 
							
								               & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}
							 | 
						||
| 
								 | 
							
								               + (r_2-w_x)(\frac{\pi}{2}-\eta) \\
							 | 
						||
| 
								 | 
							
								               & \quad - (r_2-wx)\tan{(\frac{\pi}{2}-\eta)}\\
							 | 
						||
| 
								 | 
							
								               &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) +
							 | 
						||
| 
								 | 
							
								                  (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\
							 | 
						||
| 
								 | 
							
								               & \quad - (r_1+r_2)\tan{(\frac{\pi}{2}-\eta)}
							 | 
						||
| 
								 | 
							
								               + (r_2-w_x)(\frac{\pi}{2}-\eta)\\
							 | 
						||
| 
								 | 
							
								  \end{split}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="473" HEIGHT="204" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img41.gif"
							 | 
						||
| 
								 | 
							
								 ALT="\begin{displaymath}\begin{split}\frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varep...
							 | 
						||
| 
								 | 
							
								...c{\pi}{2}-\eta)} + (r_2-w_x)(\frac{\pi}{2}-\eta)\\  \end{split}\end{displaymath}"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								(2)</TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								We could now determined the first derivative of this expression to
							 | 
						||
| 
								 | 
							
								  evaluate if it is progressive, regressive or neutral.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation}
							 | 
						||
| 
								 | 
							
								\frac{\delta S}{\delta w_x} = 2N\left[ \frac{\pi}{N} - \varepsilon + a -
							 | 
						||
| 
								 | 
							
								  \frac{\pi}{2} + \eta \right]
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="251" HEIGHT="56" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img42.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \frac{\delta S}{\delta w_x} = 2N\left[ \frac{\pi}{N} - \varepsilon + a - \frac{\pi}{2} + \eta \right]$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								(3)</TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								We could verify that:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{displaymath}
							 | 
						||
| 
								 | 
							
								a = \frac{\pi}{2} - \eta + \varepsilon
							 | 
						||
| 
								 | 
							
								\end{displaymath}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<P></P><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="111" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img43.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle a = \frac{\pi}{2} - \eta + \varepsilon$">
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								Our expression become:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation}
							 | 
						||
| 
								 | 
							
								\frac{\delta S}{\delta w_x} = 2\pi
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="80" HEIGHT="56" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img44.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \frac{\delta S}{\delta w_x} = 2\pi$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								(4)</TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The perimeter in zone 1 will always be progressive. So, it is
							 | 
						||
| 
								 | 
							
								  important to minimize the radius <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img2.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ r_2$"> in order to switch as fast as
							 | 
						||
| 
								 | 
							
								  possible to the zone 2.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<H2><A NAME="SECTION00042000000000000000">
							 | 
						||
| 
								 | 
							
								Zone 2</A>
							 | 
						||
| 
								 | 
							
								</H2>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The expression for the perimeter in the second zone is almost the
							 | 
						||
| 
								 | 
							
								  same as in the zone one. The difference is that the radius <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img2.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ r_2$"> had
							 | 
						||
| 
								 | 
							
								  vanish and the expression reduce to a simpler one:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation}
							 | 
						||
| 
								 | 
							
								\begin{split}
							 | 
						||
| 
								 | 
							
								  \frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) +
							 | 
						||
| 
								 | 
							
								                 (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\
							 | 
						||
| 
								 | 
							
								               & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\
							 | 
						||
| 
								 | 
							
								 \end{split}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="473" HEIGHT="83" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img45.gif"
							 | 
						||
| 
								 | 
							
								 ALT="\begin{displaymath}\begin{split}\frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varep...
							 | 
						||
| 
								 | 
							
								...\  & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\  \end{split}\end{displaymath}"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								(5)</TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The derivative of this expression is:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation}
							 | 
						||
| 
								 | 
							
								\begin{split}
							 | 
						||
| 
								 | 
							
								   \frac{\delta S}{\delta w_x} &= 2N\left[ \frac{\pi}{N} -\varepsilon +
							 | 
						||
| 
								 | 
							
								                                  a - \tan{(\frac{\pi}{2} - \eta)} \right]\\
							 | 
						||
| 
								 | 
							
								                               &= 2N\left[ \frac{\pi}{2} - \eta +
							 | 
						||
| 
								 | 
							
								                                  \frac{\pi}{N} - \tan{(\frac{\pi}{2}
							 | 
						||
| 
								 | 
							
								                                  - \eta)} \right]\\
							 | 
						||
| 
								 | 
							
								  \end{split}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="289" HEIGHT="83" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img46.gif"
							 | 
						||
| 
								 | 
							
								 ALT="\begin{displaymath}\begin{split}\frac{\delta S}{\delta w_x} &= 2N\left[ \frac{\p...
							 | 
						||
| 
								 | 
							
								...c{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)} \right]\\  \end{split}\end{displaymath}"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								(6)</TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								As we could see in this expression, the progressivity in zone 2 is
							 | 
						||
| 
								 | 
							
								  determined by the angle <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img47.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \eta$"> and by the number of star point
							 | 
						||
| 
								 | 
							
								  <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img48.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ N$">. It is independant of the angle <!-- MATH
							 | 
						||
| 
								 | 
							
								 $\varepsilon$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img49.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \varepsilon$">.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The zone 2 will be predominant during the motor burn time and we
							 | 
						||
| 
								 | 
							
								  would like to provide neutrallity in this zone. Neutrality is obtain
							 | 
						||
| 
								 | 
							
								  when the derivative of the perimeter is equal to zero. This lead to
							 | 
						||
| 
								 | 
							
								  the following equation:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation}
							 | 
						||
| 
								 | 
							
								\frac{\delta S}{\delta w_x} = 0 = \frac{\pi}{2} - \eta +
							 | 
						||
| 
								 | 
							
								                                   \frac{\pi}{N} - \tan{(\frac{\pi}{2}
							 | 
						||
| 
								 | 
							
								                                   - \eta)}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="287" HEIGHT="56" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img50.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \frac{\delta S}{\delta w_x} = 0 = \frac{\pi}{2} - \eta + \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								(7)</TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								Which reduce to the following implicit equation of <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img47.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \eta$"> as a
							 | 
						||
| 
								 | 
							
								  function of <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img48.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ N$">:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation}
							 | 
						||
| 
								 | 
							
								\eta = \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)} + \frac{\pi}{2}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="200" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img51.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \eta = \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)} + \frac{\pi}{2}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								(8)</TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								Solution of this equation give values of the angle <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img47.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \eta$"> to obtain
							 | 
						||
| 
								 | 
							
								  neutrality in zone 2 as a function of the number of star points.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING=3 BORDER="1">
							 | 
						||
| 
								 | 
							
								<TR><TD ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img48.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ N$"></TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img47.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \eta$"> (deg)</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img52.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \pi/N$"> (deg)</TD>
							 | 
						||
| 
								 | 
							
								</TR>
							 | 
						||
| 
								 | 
							
								<TR><TD ALIGN="CENTER">3</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">24.55</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">60.00</TD>
							 | 
						||
| 
								 | 
							
								</TR>
							 | 
						||
| 
								 | 
							
								<TR><TD ALIGN="CENTER">4</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">28.22</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">45.00</TD>
							 | 
						||
| 
								 | 
							
								</TR>
							 | 
						||
| 
								 | 
							
								<TR><TD ALIGN="CENTER">5</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">31.13</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">36.00</TD>
							 | 
						||
| 
								 | 
							
								</TR>
							 | 
						||
| 
								 | 
							
								<TR><TD ALIGN="CENTER">6</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">33.53</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">30.00</TD>
							 | 
						||
| 
								 | 
							
								</TR>
							 | 
						||
| 
								 | 
							
								<TR><TD ALIGN="CENTER">7</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">35.56</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">25.71</TD>
							 | 
						||
| 
								 | 
							
								</TR>
							 | 
						||
| 
								 | 
							
								<TR><TD ALIGN="CENTER">8</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">37.31</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">22.50</TD>
							 | 
						||
| 
								 | 
							
								</TR>
							 | 
						||
| 
								 | 
							
								<TR><TD ALIGN="CENTER">9</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">38.84</TD>
							 | 
						||
| 
								 | 
							
								<TD ALIGN="CENTER">20.00</TD>
							 | 
						||
| 
								 | 
							
								</TR>
							 | 
						||
| 
								 | 
							
								</TABLE>
							 | 
						||
| 
								 | 
							
								</DIV>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								It is important to note that when the angle <!-- MATH
							 | 
						||
| 
								 | 
							
								 $\eta < \pi/N$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img53.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \eta < \pi/N$">, a secant
							 | 
						||
| 
								 | 
							
								  fillet <!-- MATH
							 | 
						||
| 
								 | 
							
								 $\varepsilon < \pi/N$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="70" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img54.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \varepsilon < \pi/N$"> will be necessary to prevent star point
							 | 
						||
| 
								 | 
							
								  from overlapping. In general, <!-- MATH
							 | 
						||
| 
								 | 
							
								 $\varepsilon$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img49.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \varepsilon$"> should always be smaller
							 | 
						||
| 
								 | 
							
								  that <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img52.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \pi/N$">.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<H2><A NAME="SECTION00043000000000000000">
							 | 
						||
| 
								 | 
							
								Zone 3</A>
							 | 
						||
| 
								 | 
							
								</H2>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The perimeter in the zone 3 begin when <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="71" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img55.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ w_x = Y*$">. The angle <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img17.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ a$">
							 | 
						||
| 
								 | 
							
								  become progressivly smaller when propellant burned. Perimeter could
							 | 
						||
| 
								 | 
							
								  be expressed like this:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation}
							 | 
						||
| 
								 | 
							
								\frac{S}{2N} = (R-w+w_x)(\frac{\pi}{N}-\varepsilon) +
							 | 
						||
| 
								 | 
							
								               (r_1+w_x)\left[ \varepsilon +
							 | 
						||
| 
								 | 
							
								               \arcsin{(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}}) \right]
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="550" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img56.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \frac{S}{2N} = (R-w+w_x)(\frac{\pi}{N}-\varepsilon) + (r_1+w_x)\left[ \varepsilon + \arcsin{(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}}) \right]$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								(9)</TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The derivative of this expression become:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation}
							 | 
						||
| 
								 | 
							
								\begin{split}
							 | 
						||
| 
								 | 
							
								\frac{\delta S}{\delta w_x} &= 2N \biggl[ \frac{\pi}{N}  +
							 | 
						||
| 
								 | 
							
								       \arcsin{\biggl(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}\biggr)} - \\
							 | 
						||
| 
								 | 
							
								      &\quad  \frac{w_x(R-w-r_1)\sin{\varepsilon}}{(r_1+w_x)^2\sqrt{1-\frac{(R-w-r_1)^2\sin^2{\varepsilon}}{(r_1+w_x)^2}}} \biggr]\\
							 | 
						||
| 
								 | 
							
								\end{split}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="339" HEIGHT="110" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img57.gif"
							 | 
						||
| 
								 | 
							
								 ALT="\begin{displaymath}\begin{split}\frac{\delta S}{\delta w_x} &= 2N \biggl[ \frac{...
							 | 
						||
| 
								 | 
							
								..._1)^2\sin^2{\varepsilon}}{(r_1+w_x)^2}}} \biggr]\\  \end{split}\end{displaymath}"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								(10)</TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								It could be demonstrate that the perimeter is progressive in this
							 | 
						||
| 
								 | 
							
								  section. It would be interesting to eliminate the zone 3 in order to
							 | 
						||
| 
								 | 
							
								  keep neutrality as long as possible.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The condition for the elimination of zone 3 is:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation}
							 | 
						||
| 
								 | 
							
								Y* = (R-w-r_1)\frac{\sin{\varepsilon}}{\cos{\eta}} - r_1 = w
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="260" HEIGHT="55" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img58.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle Y* = (R-w-r_1)\frac{\sin{\varepsilon}}{\cos{\eta}} - r_1 = w$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								(11)</TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								This equation reduce to:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation}
							 | 
						||
| 
								 | 
							
								\sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="187" HEIGHT="51" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img59.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								(12)</TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								Now, the angle <!-- MATH
							 | 
						||
| 
								 | 
							
								 $\varepsilon$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img49.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \varepsilon$"> is determine by the web thickness <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="17" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img60.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ w$">,
							 | 
						||
| 
								 | 
							
								  the radius <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img14.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ r_1$"> and the angle <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img47.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \eta$">. As <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img47.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \eta$"> was determine by
							 | 
						||
| 
								 | 
							
								  the number of star points <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img48.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ N$"> and the radius may be dictate by
							 | 
						||
| 
								 | 
							
								  technical decision, the web thickness <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="17" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img60.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ w$"> will determine
							 | 
						||
| 
								 | 
							
								  <!-- MATH
							 | 
						||
| 
								 | 
							
								 $\varepsilon$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img49.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \varepsilon$">.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<H2><A NAME="SECTION00044000000000000000">
							 | 
						||
| 
								 | 
							
								Zone 4</A>
							 | 
						||
| 
								 | 
							
								</H2>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The analytical solution of the perimeter in the zone 4 could be
							 | 
						||
| 
								 | 
							
								  found with the help of the cosinus law:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation*}
							 | 
						||
| 
								 | 
							
								c^2 = a^2 + b^2 - 2ab\cos{\theta}
							 | 
						||
| 
								 | 
							
								\end{equation*}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="180" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img61.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle c^2 = a^2 + b^2 - 2ab\cos{\theta}$"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								   </TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The perimeter is then:
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{equation}
							 | 
						||
| 
								 | 
							
								\begin{split}
							 | 
						||
| 
								 | 
							
								\frac{S}{2N} = (r_1+w_x) \biggl[ & \varepsilon +
							 | 
						||
| 
								 | 
							
								      \arcsin{\biggl(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}\biggr)}
							 | 
						||
| 
								 | 
							
								      - \pi\\
							 | 
						||
| 
								 | 
							
								      & \quad + \arccos{\biggl(\frac{(r_1+w_x)^2+(R-r_1-w)^2-R^2}{2(r_1+w_x)(R-r_1-w)}\biggr)}
							 | 
						||
| 
								 | 
							
								      \biggr]\\
							 | 
						||
| 
								 | 
							
								\end{split}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<TR VALIGN="MIDDLE">
							 | 
						||
| 
								 | 
							
								<TD NOWRAP ALIGN="CENTER"><IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="501" HEIGHT="98" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img62.gif"
							 | 
						||
| 
								 | 
							
								 ALT="\begin{displaymath}\begin{split}\frac{S}{2N} = (r_1+w_x) \biggl[ & \varepsilon +...
							 | 
						||
| 
								 | 
							
								...1-w)^2-R^2}{2(r_1+w_x)(R-r_1-w)}\biggr)} \biggr]\\  \end{split}\end{displaymath}"></TD>
							 | 
						||
| 
								 | 
							
								<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
							 | 
						||
| 
								 | 
							
								(13)</TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE></DIV>
							 | 
						||
| 
								 | 
							
								<BR CLEAR="ALL"><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<H1><A NAME="SECTION00050000000000000000">
							 | 
						||
| 
								 | 
							
								Design example</A>
							 | 
						||
| 
								 | 
							
								</H1>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								In this section, a star configuration will be design with the
							 | 
						||
| 
								 | 
							
								  theory developp in the previous sections for a motor of <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="47" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img63.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ 3 inch$">
							 | 
						||
| 
								 | 
							
								  internal diameter.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The goal is to have a perimeter that will remain as constant as
							 | 
						||
| 
								 | 
							
								  possible to mainatin neutrality. It will also be interesting to
							 | 
						||
| 
								 | 
							
								  minimize the number of star points in order to reduce the difficulty
							 | 
						||
| 
								 | 
							
								  to cast the propellant. We could also try to optimize the volumetric
							 | 
						||
| 
								 | 
							
								  loading.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								First of all, we could determine the number of star points. In order
							 | 
						||
| 
								 | 
							
								  to maximize the quantity of matter, the angle <!-- MATH
							 | 
						||
| 
								 | 
							
								 $\varepsilon$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img49.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \varepsilon$"> should
							 | 
						||
| 
								 | 
							
								  be equal to <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img52.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \pi/N$">. In order to obtain this condition, the angle
							 | 
						||
| 
								 | 
							
								  <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img47.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \eta$"> should be larger than <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img52.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \pi/N$">. 
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								If we refer to the table of the angle <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img47.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \eta$"> in function of <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img48.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ N$">, to
							 | 
						||
| 
								 | 
							
								  obtain neutrality in zone 2, we must choose <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="52" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img64.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ N=6$"> to have <!-- MATH
							 | 
						||
| 
								 | 
							
								 $\eta >
							 | 
						||
| 
								 | 
							
								\pi/N$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img65.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ \eta >
							 | 
						||
| 
								 | 
							
								\pi/N$">.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								Three conditions are now determine:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{displaymath}
							 | 
						||
| 
								 | 
							
								N = 6
							 | 
						||
| 
								 | 
							
								\end{displaymath}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<P></P><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="52" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img66.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle N = 6$">
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{displaymath}
							 | 
						||
| 
								 | 
							
								\eta = 33.53 deg
							 | 
						||
| 
								 | 
							
								\end{displaymath}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<P></P><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="103" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img67.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \eta = 33.53 deg$">
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{displaymath}
							 | 
						||
| 
								 | 
							
								\varepsilon = 30 deg
							 | 
						||
| 
								 | 
							
								\end{displaymath}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<P></P><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="79" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img68.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \varepsilon = 30 deg$">
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								We must now found the web thickness <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="17" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img60.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ w$"> and radius <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img14.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ r_1$"> that fit
							 | 
						||
| 
								 | 
							
								  the conditions. A radius <!-- MATH
							 | 
						||
| 
								 | 
							
								 $r_1 = 1/16 in$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="95" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img69.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ r_1 = 1/16 in$"> is reasonable technically.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The equation to be solve is the following:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{displaymath}
							 | 
						||
| 
								 | 
							
								sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}
							 | 
						||
| 
								 | 
							
								\end{displaymath}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<P></P><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="187" HEIGHT="51" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img59.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle \sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}$">
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The value of <IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="17" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img60.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$ w$"> that solve this equation is:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 \begin{displaymath}
							 | 
						||
| 
								 | 
							
								w = 0.500
							 | 
						||
| 
								 | 
							
								\end{displaymath}
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<P></P><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="80" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img70.gif"
							 | 
						||
| 
								 | 
							
								 ALT="$\displaystyle w = 0.500$">
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The seven independant variable are now fixed. The resulting shape
							 | 
						||
| 
								 | 
							
								  could be seen in figure <A HREF="star.html#res">5</A>.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><A NAME="res"></A><A NAME="253"></A>
							 | 
						||
| 
								 | 
							
								<TABLE>
							 | 
						||
| 
								 | 
							
								<CAPTION ALIGN="BOTTOM"><STRONG>Figure 5:</STRONG>
							 | 
						||
| 
								 | 
							
								Resulting star configuration for the 3 inch motor.</CAPTION>
							 | 
						||
| 
								 | 
							
								<TR><TD><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 $\includegraphics[]{img/res.ps}$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="348" HEIGHT="348" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img71.gif"
							 | 
						||
| 
								 | 
							
								 ALT="\includegraphics[]{img/res.ps}">
							 | 
						||
| 
								 | 
							
								      
							 | 
						||
| 
								 | 
							
								</DIV></TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE>
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								With the functions developp in the report, the evolution of the
							 | 
						||
| 
								 | 
							
								  perimeter as a function of the web burned could be plot.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P></P>
							 | 
						||
| 
								 | 
							
								<DIV ALIGN="CENTER"><A NAME="grah"></A><A NAME="260"></A>
							 | 
						||
| 
								 | 
							
								<TABLE>
							 | 
						||
| 
								 | 
							
								<CAPTION ALIGN="BOTTOM"><STRONG>Figure 6:</STRONG>
							 | 
						||
| 
								 | 
							
								Graphic of the perimeter as a function of web burned.</CAPTION>
							 | 
						||
| 
								 | 
							
								<TR><TD><DIV ALIGN="CENTER">
							 | 
						||
| 
								 | 
							
								<!-- MATH
							 | 
						||
| 
								 | 
							
								 $\includegraphics[height=4in]{img/perimeter.ps}$
							 | 
						||
| 
								 | 
							
								 -->
							 | 
						||
| 
								 | 
							
								<IMG
							 | 
						||
| 
								 | 
							
								 WIDTH="628" HEIGHT="447" ALIGN="BOTTOM" BORDER="0"
							 | 
						||
| 
								 | 
							
								 SRC="img72.gif"
							 | 
						||
| 
								 | 
							
								 ALT="\includegraphics[height=4in]{img/perimeter.ps}">
							 | 
						||
| 
								 | 
							
								      
							 | 
						||
| 
								 | 
							
								</DIV></TD></TR>
							 | 
						||
| 
								 | 
							
								</TABLE>
							 | 
						||
| 
								 | 
							
								</DIV><P></P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<H1><A NAME="SECTION00060000000000000000">
							 | 
						||
| 
								 | 
							
								conclusion</A>
							 | 
						||
| 
								 | 
							
								</H1>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The star configuration offer the possibility to design rocket motor
							 | 
						||
| 
								 | 
							
								that works at almost constant pressure. It is then possible to
							 | 
						||
| 
								 | 
							
								optimize on case thickness and throat diameter in order to obtain the best
							 | 
						||
| 
								 | 
							
								performance.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								<H2><A NAME="SECTION00070000000000000000">
							 | 
						||
| 
								 | 
							
								Bibliography</A>
							 | 
						||
| 
								 | 
							
								</H2><DL COMPACT><DD><P></P><DT><A NAME="nasa">1</A>
							 | 
						||
| 
								 | 
							
								<DD> NASA SP-8076, <EM>Solid Propellant Grain Design And
							 | 
						||
| 
								 | 
							
								Internal Ballistics</EM>, March 1972
							 | 
						||
| 
								 | 
							
								</DL>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<H1><A NAME="SECTION00080000000000000000">
							 | 
						||
| 
								 | 
							
								About this document ...</A>
							 | 
						||
| 
								 | 
							
								</H1>
							 | 
						||
| 
								 | 
							
								 <STRONG>Burning analysis of star configuration</STRONG><P>
							 | 
						||
| 
								 | 
							
								This document was generated using the
							 | 
						||
| 
								 | 
							
								<A HREF="http://www-texdev.mpce.mq.edu.au/l2h/docs/manual/"><STRONG>LaTeX</STRONG>2<tt>HTML</tt></A> translator Version 99.2beta8 (1.42)
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								Copyright © 1993, 1994, 1995, 1996,
							 | 
						||
| 
								 | 
							
								<A HREF="http://cbl.leeds.ac.uk/nikos/personal.html">Nikos Drakos</A>, 
							 | 
						||
| 
								 | 
							
								Computer Based Learning Unit, University of Leeds.
							 | 
						||
| 
								 | 
							
								<BR>Copyright © 1997, 1998, 1999,
							 | 
						||
| 
								 | 
							
								<A HREF="http://www.maths.mq.edu.au/~ross/">Ross Moore</A>, 
							 | 
						||
| 
								 | 
							
								Mathematics Department, Macquarie University, Sydney.
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The command line arguments were: <BR>
							 | 
						||
| 
								 | 
							
								 <STRONG>latex2html</STRONG> <TT>-white -image_type gif -no_navigation -split 0 -dir html -mkdir star.tex</TT>
							 | 
						||
| 
								 | 
							
								<P>
							 | 
						||
| 
								 | 
							
								The translation was initiated by Antoine Lefebvre on 2001-07-12<BR><HR>
							 | 
						||
| 
								 | 
							
								<ADDRESS>
							 | 
						||
| 
								 | 
							
								Antoine Lefebvre
							 | 
						||
| 
								 | 
							
								2001-07-12
							 | 
						||
| 
								 | 
							
								</ADDRESS>
							 | 
						||
| 
								 | 
							
								</BODY>
							 | 
						||
| 
								 | 
							
								</HTML>
							 |