Based on the original Rocket Workbench on SourceForge in CVS at: https://sourceforge.net/projects/rocketworkbench
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

408 lines
12 KiB

  1. \documentclass[11pt, titlepage]{article}
  2. \usepackage{amsmath, graphicx}
  3. \begin{document}
  4. \author{Antoine Lefebvre}
  5. \title{Burning analysis of star configuration}
  6. \maketitle
  7. \tableofcontents
  8. \newpage
  9. \section{Introduction}
  10. The design of solid propellant grain that provide neutral burning
  11. is important to optimize rocket motor performance. The star
  12. configuration have been widely used to achieve this goal. In this
  13. report, I will present an analysis of the burning comportement of star
  14. shape as well as parameter recommandation to achieve better
  15. performance.
  16. \section{Geometric definition}
  17. The star could be characterize by seven independant variable as
  18. defined in figure \ref{star}. As every star points are identical,
  19. only one is necessary for the analysis.
  20. \begin{figure}
  21. \begin{center}
  22. \includegraphics[height=5in]{img/variable.ps}
  23. \caption{Geometric definition of star.}\label{variable}
  24. \end{center}
  25. \end{figure}
  26. \begin{align*}
  27. w &= \text{Web thickness}\\
  28. r_1 &= \text{Radius}\\
  29. r_2 &= \text{Tip radius}\\
  30. R &= \text{External radius}\\
  31. \eta &= \text{angle}\\
  32. \varepsilon &= \text{Secant fillet angle}\\
  33. N &= \text{Number of star points}\\
  34. %S &= \text{burning perimeter as a function of } wx\\
  35. \end{align*}
  36. \begin{figure}
  37. \begin{center}
  38. \includegraphics[height=4in]{img/mainstar.ps}
  39. \caption{Burning zone of the star configuration.}\label{star}
  40. \end{center}
  41. \end{figure}
  42. \section{Analysis}
  43. In this section, an expression for the perimeter of the star will be
  44. developp for each burning zone as a function of the web thickness
  45. burned ($w_x$).
  46. \subsection{Zone 1}
  47. The perimeter in the zone one could be divide in three
  48. sections. Starting by the right, we have the section before the
  49. radius $r_1$, which have a radius equal to $R-w+w_x$. The length of
  50. this section is then: $(R-w+w_x)(\pi/N - \varepsilon)$.
  51. Then, we have the perimeter of the arc of initial radius $r_1$. The
  52. angle will remain constant to $a$. The length is then: $(r_1+w_x)a$.
  53. The third section is more complicated. The lenght of the line
  54. starting at the end of the radius $r_1$ and crossing the vertical
  55. line will be evaluated first. Then, the perimeter of the radius
  56. $r_2$ will be add to the result, and the length of the line starting
  57. at the beginning of the radius will be substract.
  58. \begin{figure}
  59. \begin{center}
  60. \includegraphics[height=5in]{img/starL.ps}
  61. \caption{Determination of the length $L$.}\label{len}
  62. \end{center}
  63. \end{figure}
  64. In order to determine the length, refer to the figure \ref{len}. The
  65. lenght $L$ we are looking for will be equal $x + y$.
  66. \begin{align*}
  67. b + z &= (R-w-r_1)\sin{\varepsilon}\\
  68. x &= (r_1+w_x)\tan{\eta}\\
  69. \cos{\eta} &= \frac{r_1+w_x}{z}\\
  70. \sin{\eta} &= \frac{b}{y}\\
  71. \sin{\eta} &= \frac{(R-w-r_1)\sin{\varepsilon} -
  72. \frac{r_1+w_x}{\cos{\eta}}}{y}\\
  73. L = y + x &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} -
  74. \frac{r_1+w_x}{\cos{\eta}\sin{\eta}} +
  75. (r_1+w_x)\tan{\eta}
  76. \end{align*}
  77. We could now simplify this equation using two trigonometric
  78. identity:
  79. \begin{align*}
  80. \sin^2{\eta} -1 &= -\cos^2{\eta}\\
  81. \tan{\eta} &= \frac{1}{\tan{(\frac{\pi}{2}-\eta)}}
  82. \end{align*}
  83. \begin{equation}
  84. \begin{split}
  85. L &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} +
  86. (r_1+w_x)\left[
  87. \frac{\sin^2{\eta}-1}{\cos{\eta}\sin{\eta}} \right]\\
  88. &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} +
  89. (r_1+w_x)\left[ \frac{-\cos{\eta}}{\sin{\eta}} \right]\\
  90. &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} +
  91. (r_1+w_x)\left[ \frac{-1}{\tan{\eta}} \right]\\
  92. &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} -
  93. (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\
  94. \end{split}
  95. \end{equation}
  96. We could now determine the length of the arc and how much we should
  97. substract from the length L. Refer to figure \ref{arc} for the
  98. variables.
  99. \begin{figure}
  100. \begin{center}
  101. \includegraphics[height=3in]{img/arc.ps}
  102. \caption{Arc of radius $r_2$.}\label{arc}
  103. \end{center}
  104. \end{figure}
  105. $$\text{Arc length} = (r_2-wx)(\frac{\pi}{2}-\eta)$$
  106. $$x = \frac{r_2-wx}{\tan{\eta}}$$
  107. We have now the complete expression of the perimeter of the star as a
  108. function of web burned ($w_x$) in the zone one. This expression is
  109. valid for $0 < w_x < r_2$.
  110. \begin{equation}
  111. \begin{split}
  112. \frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) +
  113. (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\
  114. & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}
  115. + (r_2-w_x)(\frac{\pi}{2}-\eta) \\
  116. & \quad - (r_2-wx)\tan{(\frac{\pi}{2}-\eta)}\\
  117. &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) +
  118. (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\
  119. & \quad - (r_1+r_2)\tan{(\frac{\pi}{2}-\eta)}
  120. + (r_2-w_x)(\frac{\pi}{2}-\eta)\\
  121. \end{split}
  122. \end{equation}
  123. We could now determined the first derivative of this expression to
  124. evaluate if it is progressive, regressive or neutral.
  125. \begin{equation}
  126. \frac{\delta S}{\delta w_x} = 2N\left[ \frac{\pi}{N} - \varepsilon + a -
  127. \frac{\pi}{2} + \eta \right]
  128. \end{equation}
  129. We could verify that:
  130. $$a = \frac{\pi}{2} - \eta + \varepsilon$$
  131. Our expression become:
  132. \begin{equation}
  133. \frac{\delta S}{\delta w_x} = 2\pi
  134. \end{equation}
  135. The perimeter in zone 1 will always be progressive. So, it is
  136. important to minimize the radius $r_2$ in order to switch as fast as
  137. possible to the zone 2.
  138. \subsection{Zone 2}
  139. The expression for the perimeter in the second zone is almost the
  140. same as in the zone one. The difference is that the radius $r_2$ had
  141. vanish and the expression reduce to a simpler one:
  142. \begin{equation}
  143. \begin{split}
  144. \frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) +
  145. (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\
  146. & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\
  147. \end{split}
  148. \end{equation}
  149. The derivative of this expression is:
  150. \begin{equation}
  151. \begin{split}
  152. \frac{\delta S}{\delta w_x} &= 2N\left[ \frac{\pi}{N} -\varepsilon +
  153. a - \tan{(\frac{\pi}{2} - \eta)} \right]\\
  154. &= 2N\left[ \frac{\pi}{2} - \eta +
  155. \frac{\pi}{N} - \tan{(\frac{\pi}{2}
  156. - \eta)} \right]\\
  157. \end{split}
  158. \end{equation}
  159. As we could see in this expression, the progressivity in zone 2 is
  160. determined by the angle $\eta$ and by the number of star point
  161. $N$. It is independant of the angle $\varepsilon$.
  162. The zone 2 will be predominant during the motor burn time and we
  163. would like to provide neutrallity in this zone. Neutrality is obtain
  164. when the derivative of the perimeter is equal to zero. This lead to
  165. the following equation:
  166. \begin{equation}
  167. \frac{\delta S}{\delta w_x} = 0 = \frac{\pi}{2} - \eta +
  168. \frac{\pi}{N} - \tan{(\frac{\pi}{2}
  169. - \eta)}
  170. \end{equation}
  171. Which reduce to the following implicit equation of $\eta$ as a
  172. function of $N$:
  173. \begin{equation}
  174. \eta = \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)} + \frac{\pi}{2}
  175. \end{equation}
  176. Solution of this equation give values of the angle $\eta$ to obtain
  177. neutrality in zone 2 as a function of the number of star points.
  178. \begin{center}
  179. \begin{tabular}{||c|c|c||}
  180. \hline
  181. \hline
  182. $N$ & $\eta$ (deg) & $\pi/N$ (deg) \\
  183. \hline
  184. 3 & 24.55 & 60.00\\
  185. 4 & 28.22 & 45.00\\
  186. 5 & 31.13 & 36.00\\
  187. 6 & 33.53 & 30.00\\
  188. 7 & 35.56 & 25.71\\
  189. 8 & 37.31 & 22.50\\
  190. 9 & 38.84 & 20.00\\
  191. \hline
  192. \end{tabular}
  193. \end{center}
  194. It is important to note that when the angle $\eta < \pi/N$, a secant
  195. fillet $\varepsilon < \pi/N$ will be necessary to prevent star point
  196. from overlapping. In general, $\varepsilon$ should always be smaller
  197. that $\pi/N$.
  198. \subsection{Zone 3}
  199. The perimeter in the zone 3 begin when $w_x = Y*$. The angle $a$
  200. become progressivly smaller when propellant burned. Perimeter could
  201. be expressed like this:
  202. \begin{equation}
  203. \frac{S}{2N} = (R-w+w_x)(\frac{\pi}{N}-\varepsilon) +
  204. (r_1+w_x)\left[ \varepsilon +
  205. \arcsin{(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}}) \right]
  206. \end{equation}
  207. The derivative of this expression become:
  208. \begin{equation}
  209. \begin{split}
  210. \frac{\delta S}{\delta w_x} &= 2N \biggl[ \frac{\pi}{N} +
  211. \arcsin{\biggl(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}\biggr)} - \\
  212. &\quad \frac{w_x(R-w-r_1)\sin{\varepsilon}}{(r_1+w_x)^2\sqrt{1-\frac{(R-w-r_1)^2\sin^2{\varepsilon}}{(r_1+w_x)^2}}} \biggr]\\
  213. \end{split}
  214. \end{equation}
  215. It could be demonstrate that the perimeter is progressive in this
  216. section. It would be interesting to eliminate the zone 3 in order to
  217. keep neutrality as long as possible.
  218. The condition for the elimination of zone 3 is:
  219. \begin{equation}
  220. Y* = (R-w-r_1)\frac{\sin{\varepsilon}}{\cos{\eta}} - r_1 = w
  221. \end{equation}
  222. This equation reduce to:
  223. \begin{equation}
  224. \sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}
  225. \end{equation}
  226. Now, the angle $\varepsilon$ is determine by the web thickness $w$,
  227. the radius $r_1$ and the angle $\eta$. As $\eta$ was determine by
  228. the number of star points $N$ and the radius may be dictate by
  229. technical decision, the web thickness $w$ will determine
  230. $\varepsilon$.
  231. \subsection{Zone 4}
  232. The analytical solution of the perimeter in the zone 4 could be
  233. found with the help of the cosinus law:
  234. \begin{equation*}
  235. c^2 = a^2 + b^2 - 2ab\cos{\theta}
  236. \end{equation*}
  237. The perimeter is then:
  238. \begin{equation}
  239. \begin{split}
  240. \frac{S}{2N} = (r_1+w_x) \biggl[ & \varepsilon +
  241. \arcsin{\biggl(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}\biggr)}
  242. - \pi\\
  243. & \quad + \arccos{\biggl(\frac{(r_1+w_x)^2+(R-r_1-w)^2-R^2}{2(r_1+w_x)(R-r_1-w)}\biggr)}
  244. \biggr]\\
  245. \end{split}
  246. \end{equation}
  247. \section{Design example}
  248. In this section, a star configuration will be design with the
  249. theory developp in the previous sections for a motor of $3 inch$
  250. internal diameter.
  251. The goal is to have a perimeter that will remain as constant as
  252. possible to mainatin neutrality. It will also be interesting to
  253. minimize the number of star points in order to reduce the difficulty
  254. to cast the propellant. We could also try to optimize the volumetric
  255. loading.
  256. % \subsection{Solution}
  257. First of all, we could determine the number of star points. In order
  258. to maximize the quantity of matter, the angle $\varepsilon$ should
  259. be equal to $\pi/N$. In order to obtain this condition, the angle
  260. $\eta$ should be larger than $\pi/N$.
  261. If we refer to the table of the angle $\eta$ in function of $N$, to
  262. obtain neutrality in zone 2, we must choose $N=6$ to have $\eta >
  263. \pi/N$.
  264. Three conditions are now determine:
  265. $$N = 6$$
  266. $$\eta = 33.53 deg$$
  267. $$\varepsilon = 30 deg$$
  268. We must now found the web thickness $w$ and radius $r_1$ that fit
  269. the conditions. A radius $r_1 = 1/16 in$ is reasonable technically.
  270. The equation to be solve is the following:
  271. $$sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}$$
  272. The value of $w$ that solve this equation is:
  273. $$w = 0.500$$
  274. The seven independant variable are now fixed. The resulting shape
  275. could be seen in figure \ref{res}.
  276. \begin{figure}
  277. \begin{center}
  278. \includegraphics[]{img/res.ps}
  279. \caption{Resulting star configuration for the 3 inch motor.}\label{res}
  280. \end{center}
  281. \end{figure}
  282. With the functions developp in the report, the evolution of the
  283. perimeter as a function of the web burned could be plot.
  284. \begin{figure}
  285. \begin{center}
  286. \includegraphics[height=4in]{img/perimeter.ps}
  287. \caption{Graphic of the perimeter as a function of web burned.}\label{grah}
  288. \end{center}
  289. \end{figure}
  290. \section{conclusion}
  291. The star configuration offer the possibility to design rocket motor
  292. that works at almost constant pressure. It is then possible to
  293. optimize on case thickness and throat diameter in order to obtain the best
  294. performance.
  295. \begin{thebibliography}{}
  296. \bibitem{nasa} NASA SP-8076, {\em Solid Propellant Grain Design And
  297. Internal Ballistics}, March 1972
  298. \end{thebibliography}
  299. \end{document}