|
|
- \documentclass[11pt, titlepage]{article}
-
- \usepackage{amsmath, graphicx}
-
- \begin{document}
-
-
- \author{Antoine Lefebvre}
- \title{Burning analysis of star configuration}
- \maketitle
-
- \tableofcontents
-
- \newpage
-
- \section{Introduction}
-
- The design of solid propellant grain that provide neutral burning
- is important to optimize rocket motor performance. The star
- configuration have been widely used to achieve this goal. In this
- report, I will present an analysis of the burning comportement of star
- shape as well as parameter recommandation to achieve better
- performance.
-
- \section{Geometric definition}
-
- The star could be characterize by seven independant variable as
- defined in figure \ref{star}. As every star points are identical,
- only one is necessary for the analysis.
-
- \begin{figure}
- \begin{center}
- \includegraphics[height=5in]{img/variable.ps}
- \caption{Geometric definition of star.}\label{variable}
- \end{center}
- \end{figure}
-
- \begin{align*}
- w &= \text{Web thickness}\\
- r_1 &= \text{Radius}\\
- r_2 &= \text{Tip radius}\\
- R &= \text{External radius}\\
- \eta &= \text{angle}\\
- \varepsilon &= \text{Secant fillet angle}\\
- N &= \text{Number of star points}\\
- %S &= \text{burning perimeter as a function of } wx\\
- \end{align*}
-
-
- \begin{figure}
- \begin{center}
- \includegraphics[height=4in]{img/mainstar.ps}
- \caption{Burning zone of the star configuration.}\label{star}
- \end{center}
- \end{figure}
-
- \section{Analysis}
-
- In this section, an expression for the perimeter of the star will be
- developp for each burning zone as a function of the web thickness
- burned ($w_x$).
-
- \subsection{Zone 1}
-
- The perimeter in the zone one could be divide in three
- sections. Starting by the right, we have the section before the
- radius $r_1$, which have a radius equal to $R-w+w_x$. The length of
- this section is then: $(R-w+w_x)(\pi/N - \varepsilon)$.
-
- Then, we have the perimeter of the arc of initial radius $r_1$. The
- angle will remain constant to $a$. The length is then: $(r_1+w_x)a$.
-
- The third section is more complicated. The lenght of the line
- starting at the end of the radius $r_1$ and crossing the vertical
- line will be evaluated first. Then, the perimeter of the radius
- $r_2$ will be add to the result, and the length of the line starting
- at the beginning of the radius will be substract.
-
- \begin{figure}
- \begin{center}
- \includegraphics[height=5in]{img/starL.ps}
- \caption{Determination of the length $L$.}\label{len}
- \end{center}
- \end{figure}
-
- In order to determine the length, refer to the figure \ref{len}. The
- lenght $L$ we are looking for will be equal $x + y$.
-
- \begin{align*}
- b + z &= (R-w-r_1)\sin{\varepsilon}\\
- x &= (r_1+w_x)\tan{\eta}\\
- \cos{\eta} &= \frac{r_1+w_x}{z}\\
- \sin{\eta} &= \frac{b}{y}\\
- \sin{\eta} &= \frac{(R-w-r_1)\sin{\varepsilon} -
- \frac{r_1+w_x}{\cos{\eta}}}{y}\\
- L = y + x &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} -
- \frac{r_1+w_x}{\cos{\eta}\sin{\eta}} +
- (r_1+w_x)\tan{\eta}
- \end{align*}
-
- We could now simplify this equation using two trigonometric
- identity:
-
- \begin{align*}
- \sin^2{\eta} -1 &= -\cos^2{\eta}\\
- \tan{\eta} &= \frac{1}{\tan{(\frac{\pi}{2}-\eta)}}
- \end{align*}
-
- \begin{equation}
- \begin{split}
- L &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} +
- (r_1+w_x)\left[
- \frac{\sin^2{\eta}-1}{\cos{\eta}\sin{\eta}} \right]\\
- &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} +
- (r_1+w_x)\left[ \frac{-\cos{\eta}}{\sin{\eta}} \right]\\
- &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} +
- (r_1+w_x)\left[ \frac{-1}{\tan{\eta}} \right]\\
- &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} -
- (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\
- \end{split}
- \end{equation}
-
-
- We could now determine the length of the arc and how much we should
- substract from the length L. Refer to figure \ref{arc} for the
- variables.
-
- \begin{figure}
- \begin{center}
- \includegraphics[height=3in]{img/arc.ps}
- \caption{Arc of radius $r_2$.}\label{arc}
- \end{center}
- \end{figure}
-
- $$\text{Arc length} = (r_2-wx)(\frac{\pi}{2}-\eta)$$
-
- $$x = \frac{r_2-wx}{\tan{\eta}}$$
-
- We have now the complete expression of the perimeter of the star as a
- function of web burned ($w_x$) in the zone one. This expression is
- valid for $0 < w_x < r_2$.
-
- \begin{equation}
- \begin{split}
- \frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) +
- (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\
- & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}
- + (r_2-w_x)(\frac{\pi}{2}-\eta) \\
- & \quad - (r_2-wx)\tan{(\frac{\pi}{2}-\eta)}\\
- &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) +
- (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\
- & \quad - (r_1+r_2)\tan{(\frac{\pi}{2}-\eta)}
- + (r_2-w_x)(\frac{\pi}{2}-\eta)\\
- \end{split}
- \end{equation}
-
-
- We could now determined the first derivative of this expression to
- evaluate if it is progressive, regressive or neutral.
-
- \begin{equation}
- \frac{\delta S}{\delta w_x} = 2N\left[ \frac{\pi}{N} - \varepsilon + a -
- \frac{\pi}{2} + \eta \right]
- \end{equation}
-
- We could verify that:
-
- $$a = \frac{\pi}{2} - \eta + \varepsilon$$
-
- Our expression become:
-
- \begin{equation}
- \frac{\delta S}{\delta w_x} = 2\pi
- \end{equation}
-
-
- The perimeter in zone 1 will always be progressive. So, it is
- important to minimize the radius $r_2$ in order to switch as fast as
- possible to the zone 2.
-
-
- \subsection{Zone 2}
-
- The expression for the perimeter in the second zone is almost the
- same as in the zone one. The difference is that the radius $r_2$ had
- vanish and the expression reduce to a simpler one:
-
- \begin{equation}
- \begin{split}
- \frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) +
- (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\
- & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\
- \end{split}
- \end{equation}
-
- The derivative of this expression is:
-
- \begin{equation}
- \begin{split}
- \frac{\delta S}{\delta w_x} &= 2N\left[ \frac{\pi}{N} -\varepsilon +
- a - \tan{(\frac{\pi}{2} - \eta)} \right]\\
- &= 2N\left[ \frac{\pi}{2} - \eta +
- \frac{\pi}{N} - \tan{(\frac{\pi}{2}
- - \eta)} \right]\\
- \end{split}
- \end{equation}
-
- As we could see in this expression, the progressivity in zone 2 is
- determined by the angle $\eta$ and by the number of star point
- $N$. It is independant of the angle $\varepsilon$.
-
- The zone 2 will be predominant during the motor burn time and we
- would like to provide neutrallity in this zone. Neutrality is obtain
- when the derivative of the perimeter is equal to zero. This lead to
- the following equation:
-
- \begin{equation}
- \frac{\delta S}{\delta w_x} = 0 = \frac{\pi}{2} - \eta +
- \frac{\pi}{N} - \tan{(\frac{\pi}{2}
- - \eta)}
- \end{equation}
-
- Which reduce to the following implicit equation of $\eta$ as a
- function of $N$:
-
-
- \begin{equation}
- \eta = \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)} + \frac{\pi}{2}
- \end{equation}
-
- Solution of this equation give values of the angle $\eta$ to obtain
- neutrality in zone 2 as a function of the number of star points.
-
- \begin{center}
- \begin{tabular}{||c|c|c||}
- \hline
- \hline
- $N$ & $\eta$ (deg) & $\pi/N$ (deg) \\
- \hline
- 3 & 24.55 & 60.00\\
- 4 & 28.22 & 45.00\\
- 5 & 31.13 & 36.00\\
- 6 & 33.53 & 30.00\\
- 7 & 35.56 & 25.71\\
- 8 & 37.31 & 22.50\\
- 9 & 38.84 & 20.00\\
- \hline
- \end{tabular}
- \end{center}
-
- It is important to note that when the angle $\eta < \pi/N$, a secant
- fillet $\varepsilon < \pi/N$ will be necessary to prevent star point
- from overlapping. In general, $\varepsilon$ should always be smaller
- that $\pi/N$.
-
- \subsection{Zone 3}
-
- The perimeter in the zone 3 begin when $w_x = Y*$. The angle $a$
- become progressivly smaller when propellant burned. Perimeter could
- be expressed like this:
-
- \begin{equation}
- \frac{S}{2N} = (R-w+w_x)(\frac{\pi}{N}-\varepsilon) +
- (r_1+w_x)\left[ \varepsilon +
- \arcsin{(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}}) \right]
- \end{equation}
-
-
- The derivative of this expression become:
-
- \begin{equation}
- \begin{split}
- \frac{\delta S}{\delta w_x} &= 2N \biggl[ \frac{\pi}{N} +
- \arcsin{\biggl(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}\biggr)} - \\
- &\quad \frac{w_x(R-w-r_1)\sin{\varepsilon}}{(r_1+w_x)^2\sqrt{1-\frac{(R-w-r_1)^2\sin^2{\varepsilon}}{(r_1+w_x)^2}}} \biggr]\\
- \end{split}
- \end{equation}
-
-
- It could be demonstrate that the perimeter is progressive in this
- section. It would be interesting to eliminate the zone 3 in order to
- keep neutrality as long as possible.
-
- The condition for the elimination of zone 3 is:
-
- \begin{equation}
- Y* = (R-w-r_1)\frac{\sin{\varepsilon}}{\cos{\eta}} - r_1 = w
- \end{equation}
-
- This equation reduce to:
-
- \begin{equation}
- \sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}
- \end{equation}
-
- Now, the angle $\varepsilon$ is determine by the web thickness $w$,
- the radius $r_1$ and the angle $\eta$. As $\eta$ was determine by
- the number of star points $N$ and the radius may be dictate by
- technical decision, the web thickness $w$ will determine
- $\varepsilon$.
-
- \subsection{Zone 4}
-
- The analytical solution of the perimeter in the zone 4 could be
- found with the help of the cosinus law:
-
- \begin{equation*}
- c^2 = a^2 + b^2 - 2ab\cos{\theta}
- \end{equation*}
-
- The perimeter is then:
- \begin{equation}
- \begin{split}
- \frac{S}{2N} = (r_1+w_x) \biggl[ & \varepsilon +
- \arcsin{\biggl(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}\biggr)}
- - \pi\\
- & \quad + \arccos{\biggl(\frac{(r_1+w_x)^2+(R-r_1-w)^2-R^2}{2(r_1+w_x)(R-r_1-w)}\biggr)}
- \biggr]\\
- \end{split}
- \end{equation}
-
-
-
- \section{Design example}
-
- In this section, a star configuration will be design with the
- theory developp in the previous sections for a motor of $3 inch$
- internal diameter.
-
- The goal is to have a perimeter that will remain as constant as
- possible to mainatin neutrality. It will also be interesting to
- minimize the number of star points in order to reduce the difficulty
- to cast the propellant. We could also try to optimize the volumetric
- loading.
-
- % \subsection{Solution}
-
- First of all, we could determine the number of star points. In order
- to maximize the quantity of matter, the angle $\varepsilon$ should
- be equal to $\pi/N$. In order to obtain this condition, the angle
- $\eta$ should be larger than $\pi/N$.
-
- If we refer to the table of the angle $\eta$ in function of $N$, to
- obtain neutrality in zone 2, we must choose $N=6$ to have $\eta >
- \pi/N$.
-
- Three conditions are now determine:
-
- $$N = 6$$
- $$\eta = 33.53 deg$$
- $$\varepsilon = 30 deg$$
-
- We must now found the web thickness $w$ and radius $r_1$ that fit
- the conditions. A radius $r_1 = 1/16 in$ is reasonable technically.
-
- The equation to be solve is the following:
-
- $$sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}$$
-
- The value of $w$ that solve this equation is:
-
- $$w = 0.500$$
-
- The seven independant variable are now fixed. The resulting shape
- could be seen in figure \ref{res}.
-
-
- \begin{figure}
- \begin{center}
- \includegraphics[]{img/res.ps}
- \caption{Resulting star configuration for the 3 inch motor.}\label{res}
- \end{center}
- \end{figure}
-
-
- With the functions developp in the report, the evolution of the
- perimeter as a function of the web burned could be plot.
-
- \begin{figure}
- \begin{center}
- \includegraphics[height=4in]{img/perimeter.ps}
- \caption{Graphic of the perimeter as a function of web burned.}\label{grah}
- \end{center}
- \end{figure}
-
-
- \section{conclusion}
-
- The star configuration offer the possibility to design rocket motor
- that works at almost constant pressure. It is then possible to
- optimize on case thickness and throat diameter in order to obtain the best
- performance.
-
- \begin{thebibliography}{}
- \bibitem{nasa} NASA SP-8076, {\em Solid Propellant Grain Design And
- Internal Ballistics}, March 1972
- \end{thebibliography}
-
- \end{document}
-
-
-
-
-
-
-
-
-
|