1282 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
		
		
			
		
	
	
			1282 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
|  | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"> | ||
|  | 
 | ||
|  | <!--Converted with LaTeX2HTML 99.2beta8 (1.42)
 | ||
|  | original version by:  Nikos Drakos, CBLU, University of Leeds | ||
|  | * revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan | ||
|  | * with significant contributions from: | ||
|  |   Jens Lippmann, Marek Rouchal, Martin Wilck and others --> | ||
|  | <HTML> | ||
|  | <HEAD> | ||
|  | <TITLE>Burning analysis of star configuration</TITLE> | ||
|  | <META NAME="description" CONTENT="Burning analysis of star configuration"> | ||
|  | <META NAME="keywords" CONTENT="star"> | ||
|  | <META NAME="resource-type" CONTENT="document"> | ||
|  | <META NAME="distribution" CONTENT="global"> | ||
|  | 
 | ||
|  | <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1"> | ||
|  | <META NAME="Generator" CONTENT="LaTeX2HTML v99.2beta8"> | ||
|  | <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css"> | ||
|  | 
 | ||
|  | <LINK REL="STYLESHEET" HREF="star.css"> | ||
|  | 
 | ||
|  | </HEAD> | ||
|  | 
 | ||
|  | <BODY > | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <H1 ALIGN=CENTER>Burning analysis of star configuration</H1> | ||
|  | <P ALIGN=CENTER><STRONG>Antoine Lefebvre</STRONG></P> | ||
|  | <P ALIGN=LEFT></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | <BR> | ||
|  | 
 | ||
|  | <H2><A NAME="SECTION00010000000000000000"> | ||
|  | Contents</A> | ||
|  | </H2> | ||
|  | <!--Table of Contents--> | ||
|  | 
 | ||
|  | <UL> | ||
|  | <LI><A NAME="tex2html19" | ||
|  |   HREF="star.html">Contents</A> | ||
|  | <LI><A NAME="tex2html20" | ||
|  |   HREF="star.html#SECTION00020000000000000000">Introduction</A> | ||
|  | <LI><A NAME="tex2html21" | ||
|  |   HREF="star.html#SECTION00030000000000000000">Geometric definition</A> | ||
|  | <LI><A NAME="tex2html22" | ||
|  |   HREF="star.html#SECTION00040000000000000000">Analysis</A> | ||
|  | <UL> | ||
|  | <LI><A NAME="tex2html23" | ||
|  |   HREF="star.html#SECTION00041000000000000000">Zone 1</A> | ||
|  | <LI><A NAME="tex2html24" | ||
|  |   HREF="star.html#SECTION00042000000000000000">Zone 2</A> | ||
|  | <LI><A NAME="tex2html25" | ||
|  |   HREF="star.html#SECTION00043000000000000000">Zone 3</A> | ||
|  | <LI><A NAME="tex2html26" | ||
|  |   HREF="star.html#SECTION00044000000000000000">Zone 4</A> | ||
|  | </UL> | ||
|  | <LI><A NAME="tex2html27" | ||
|  |   HREF="star.html#SECTION00050000000000000000">Design example</A> | ||
|  | <LI><A NAME="tex2html28" | ||
|  |   HREF="star.html#SECTION00060000000000000000">conclusion</A> | ||
|  | <LI><A NAME="tex2html29" | ||
|  |   HREF="star.html#SECTION00070000000000000000">Bibliography</A> | ||
|  | <LI><A NAME="tex2html30" | ||
|  |   HREF="star.html#SECTION00080000000000000000">About this document ...</A> | ||
|  | </UL> | ||
|  | <!--End of Table of Contents--> | ||
|  | <P> | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <H1><A NAME="SECTION00020000000000000000"> | ||
|  | Introduction</A> | ||
|  | </H1> | ||
|  | 
 | ||
|  | <P> | ||
|  | The design of solid propellant grain that provide neutral burning | ||
|  | is important to optimize rocket motor performance. The star | ||
|  | configuration have been widely used to achieve this goal. In this | ||
|  | report, I will present an analysis of the burning comportement of star | ||
|  | shape as well as parameter recommandation to achieve better | ||
|  | performance. | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <H1><A NAME="SECTION00030000000000000000"> | ||
|  | Geometric definition</A> | ||
|  | </H1> | ||
|  | 
 | ||
|  | <P> | ||
|  | The star could be characterize by seven independant variable as | ||
|  | defined in figure <A HREF="star.html#star">2</A>. As every star points are identical, | ||
|  | only one is necessary for the analysis.  | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><A NAME="variable"></A><A NAME="12"></A> | ||
|  | <TABLE> | ||
|  | <CAPTION ALIGN="BOTTOM"><STRONG>Figure 1:</STRONG> | ||
|  | Geometric definition of star.</CAPTION> | ||
|  | <TR><TD><DIV ALIGN="CENTER"> | ||
|  | <!-- MATH
 | ||
|  |  $\includegraphics[height=5in]{img/variable.ps}$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="498" HEIGHT="401" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img3.gif" | ||
|  |  ALT="\includegraphics[height=5in]{img/variable.ps}"> | ||
|  |        | ||
|  | </DIV></TD></TR> | ||
|  | </TABLE> | ||
|  | </DIV><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="17" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img4.gif" | ||
|  |  ALT="$\displaystyle w$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img5.gif" | ||
|  |  ALT="$\displaystyle =$">   Web thickness</TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img6.gif" | ||
|  |  ALT="$\displaystyle r_1$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img5.gif" | ||
|  |  ALT="$\displaystyle =$">   Radius</TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img7.gif" | ||
|  |  ALT="$\displaystyle r_2$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img5.gif" | ||
|  |  ALT="$\displaystyle =$">   Tip radius</TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img8.gif" | ||
|  |  ALT="$\displaystyle R$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img5.gif" | ||
|  |  ALT="$\displaystyle =$">   External radius</TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img9.gif" | ||
|  |  ALT="$\displaystyle \eta$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img5.gif" | ||
|  |  ALT="$\displaystyle =$">   angle</TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img10.gif" | ||
|  |  ALT="$\displaystyle \varepsilon$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img5.gif" | ||
|  |  ALT="$\displaystyle =$">   Secant fillet angle</TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img11.gif" | ||
|  |  ALT="$\displaystyle N$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img5.gif" | ||
|  |  ALT="$\displaystyle =$">   Number of star points</TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><A NAME="star"></A><A NAME="28"></A> | ||
|  | <TABLE> | ||
|  | <CAPTION ALIGN="BOTTOM"><STRONG>Figure 2:</STRONG> | ||
|  | Burning zone of the star configuration.</CAPTION> | ||
|  | <TR><TD><DIV ALIGN="CENTER"> | ||
|  | <!-- MATH
 | ||
|  |  $\includegraphics[height=4in]{img/mainstar.ps}$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="516" HEIGHT="392" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img12.gif" | ||
|  |  ALT="\includegraphics[height=4in]{img/mainstar.ps}"> | ||
|  |        | ||
|  | </DIV></TD></TR> | ||
|  | </TABLE> | ||
|  | </DIV><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <H1><A NAME="SECTION00040000000000000000"> | ||
|  | Analysis</A> | ||
|  | </H1> | ||
|  | 
 | ||
|  | <P> | ||
|  | In this section, an expression for the perimeter of the star will be | ||
|  | developp for each burning zone as a function of the web thickness | ||
|  | burned (<IMG | ||
|  |  WIDTH="25" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img13.gif" | ||
|  |  ALT="$ w_x$">). | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <H2><A NAME="SECTION00041000000000000000"> | ||
|  | Zone 1</A> | ||
|  | </H2> | ||
|  | 
 | ||
|  | <P> | ||
|  | The perimeter in the zone one could be divide in three | ||
|  |   sections. Starting by the right, we have the section before the | ||
|  |   radius <IMG | ||
|  |  WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img14.gif" | ||
|  |  ALT="$ r_1$">, which have a radius equal to <IMG | ||
|  |  WIDTH="94" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img15.gif" | ||
|  |  ALT="$ R-w+w_x$">. The length of | ||
|  |   this section is then: <!-- MATH
 | ||
|  |  $(R-w+w_x)(\pi/N - \varepsilon)$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="185" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img16.gif" | ||
|  |  ALT="$ (R-w+w_x)(\pi/N - \varepsilon)$">. | ||
|  | 
 | ||
|  | <P> | ||
|  | Then, we have the perimeter of the arc of initial radius <IMG | ||
|  |  WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img14.gif" | ||
|  |  ALT="$ r_1$">. The | ||
|  |   angle will remain constant to <IMG | ||
|  |  WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img17.gif" | ||
|  |  ALT="$ a$">. The length is then: <!-- MATH
 | ||
|  |  $(r_1+w_x)a$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="85" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img18.gif" | ||
|  |  ALT="$ (r_1+w_x)a$">. | ||
|  | 
 | ||
|  | <P> | ||
|  | The third section is more complicated. The lenght of the line | ||
|  |   starting at the end of the radius <IMG | ||
|  |  WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img14.gif" | ||
|  |  ALT="$ r_1$"> and crossing the vertical | ||
|  |   line will be evaluated first. Then, the perimeter of the radius | ||
|  |   <IMG | ||
|  |  WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img2.gif" | ||
|  |  ALT="$ r_2$"> will be add to the result, and the length of the line starting | ||
|  |   at the beginning of the radius will be substract. | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><A NAME="len"></A><A NAME="37"></A> | ||
|  | <TABLE> | ||
|  | <CAPTION ALIGN="BOTTOM"><STRONG>Figure 3:</STRONG> | ||
|  | Determination of the length <IMG | ||
|  |  WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img1.gif" | ||
|  |  ALT="$ L$">.</CAPTION> | ||
|  | <TR><TD><DIV ALIGN="CENTER"> | ||
|  | <!-- MATH
 | ||
|  |  $\includegraphics[height=5in]{img/starL.ps}$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="255" HEIGHT="529" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img19.gif" | ||
|  |  ALT="\includegraphics[height=5in]{img/starL.ps}"> | ||
|  |        | ||
|  | </DIV></TD></TR> | ||
|  | </TABLE> | ||
|  | </DIV><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | In order to determine the length, refer to the figure <A HREF="star.html#len">3</A>. The | ||
|  |   lenght <IMG | ||
|  |  WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img1.gif" | ||
|  |  ALT="$ L$"> we are looking for will be equal <IMG | ||
|  |  WIDTH="45" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img20.gif" | ||
|  |  ALT="$ x + y$">. | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img21.gif" | ||
|  |  ALT="$\displaystyle b + z$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="156" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img22.gif" | ||
|  |  ALT="$\displaystyle = (R-w-r_1)\sin{\varepsilon}$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img23.gif" | ||
|  |  ALT="$\displaystyle x$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="134" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img24.gif" | ||
|  |  ALT="$\displaystyle = (r_1+w_x)\tan{\eta}$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="40" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img25.gif" | ||
|  |  ALT="$\displaystyle \cos{\eta}$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="84" HEIGHT="51" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img26.gif" | ||
|  |  ALT="$\displaystyle = \frac{r_1+w_x}{z}$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="38" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img27.gif" | ||
|  |  ALT="$\displaystyle \sin{\eta}$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="36" HEIGHT="56" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img28.gif" | ||
|  |  ALT="$\displaystyle = \frac{b}{y}$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="38" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img27.gif" | ||
|  |  ALT="$\displaystyle \sin{\eta}$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="225" HEIGHT="68" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img29.gif" | ||
|  |  ALT="$\displaystyle = \frac{(R-w-r_1)\sin{\varepsilon} - \frac{r_1+w_x}{\cos{\eta}}}{y}$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="80" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img30.gif" | ||
|  |  ALT="$\displaystyle L = y + x$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="388" HEIGHT="55" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img31.gif" | ||
|  |  ALT="$\displaystyle = (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} - \frac{r_1+w_x}{\cos{\eta}\sin{\eta}} + (r_1+w_x)\tan{\eta}$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | We could now simplify this equation using two trigonometric | ||
|  |   identity: | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="76" HEIGHT="38" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img32.gif" | ||
|  |  ALT="$\displaystyle \sin^2{\eta} -1$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="82" HEIGHT="38" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img33.gif" | ||
|  |  ALT="$\displaystyle = -\cos^2{\eta}$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="RIGHT"><IMG | ||
|  |  WIDTH="42" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img34.gif" | ||
|  |  ALT="$\displaystyle \tan{\eta}$"></TD> | ||
|  | <TD NOWRAP ALIGN="LEFT"><IMG | ||
|  |  WIDTH="111" HEIGHT="54" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img35.gif" | ||
|  |  ALT="$\displaystyle = \frac{1}{\tan{(\frac{\pi}{2}-\eta)}}$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation} | ||
|  | \begin{split} | ||
|  |   L &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} + | ||
|  |              (r_1+w_x)\left[ | ||
|  |              \frac{\sin^2{\eta}-1}{\cos{\eta}\sin{\eta}} \right]\\ | ||
|  |       &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} +  | ||
|  |              (r_1+w_x)\left[ \frac{-\cos{\eta}}{\sin{\eta}} \right]\\ | ||
|  |       &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} +  | ||
|  |              (r_1+w_x)\left[ \frac{-1}{\tan{\eta}} \right]\\ | ||
|  |       &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} -  | ||
|  |              (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\ | ||
|  | \end{split} | ||
|  | \end{equation} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="356" HEIGHT="191" BORDER="0" | ||
|  |  SRC="img36.gif" | ||
|  |  ALT="\begin{displaymath}\begin{split}L &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta... | ||
|  | ...sin{\eta}} - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\  \end{split}\end{displaymath}"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  | (1)</TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | We could now determine the length of the arc and how much we should | ||
|  |  substract from the length L. Refer to figure <A HREF="star.html#arc">4</A> for the | ||
|  |  variables. | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><A NAME="arc"></A><A NAME="96"></A> | ||
|  | <TABLE> | ||
|  | <CAPTION ALIGN="BOTTOM"><STRONG>Figure 4:</STRONG> | ||
|  | Arc of radius <IMG | ||
|  |  WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img2.gif" | ||
|  |  ALT="$ r_2$">.</CAPTION> | ||
|  | <TR><TD><DIV ALIGN="CENTER"> | ||
|  | <!-- MATH
 | ||
|  |  $\includegraphics[height=3in]{img/arc.ps}$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="201" HEIGHT="283" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img37.gif" | ||
|  |  ALT="\includegraphics[height=3in]{img/arc.ps}"> | ||
|  |        | ||
|  | </DIV></TD></TR> | ||
|  | </TABLE> | ||
|  | </DIV><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | <!-- MATH
 | ||
|  |  \begin{displaymath} | ||
|  | \text{Arc length} = (r_2-wx)(\frac{\pi}{2}-\eta) | ||
|  | \end{displaymath} | ||
|  |  --> | ||
|  | <P></P><DIV ALIGN="CENTER"> | ||
|  | Arc length<IMG | ||
|  |  WIDTH="154" HEIGHT="46" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img38.gif" | ||
|  |  ALT="$\displaystyle = (r_2-wx)(\frac{\pi}{2}-\eta)$"> | ||
|  | </DIV><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | <!-- MATH
 | ||
|  |  \begin{displaymath} | ||
|  | x = \frac{r_2-wx}{\tan{\eta}} | ||
|  | \end{displaymath} | ||
|  |  --> | ||
|  | <P></P><DIV ALIGN="CENTER"> | ||
|  | <IMG | ||
|  |  WIDTH="101" HEIGHT="51" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img39.gif" | ||
|  |  ALT="$\displaystyle x = \frac{r_2-wx}{\tan{\eta}}$"> | ||
|  | </DIV><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | We have now the complete expression of the perimeter of the star as a | ||
|  |  function of web burned (<IMG | ||
|  |  WIDTH="25" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img13.gif" | ||
|  |  ALT="$ w_x$">) in the zone one. This expression is | ||
|  |  valid for <!-- MATH
 | ||
|  |  $0 < w_x < r_2$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="96" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img40.gif" | ||
|  |  ALT="$ 0 < w_x < r_2$">. | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation} | ||
|  | \begin{split} | ||
|  |   \frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) + | ||
|  |                   (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\ | ||
|  |                & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)} | ||
|  |                + (r_2-w_x)(\frac{\pi}{2}-\eta) \\ | ||
|  |                & \quad - (r_2-wx)\tan{(\frac{\pi}{2}-\eta)}\\ | ||
|  |                &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) + | ||
|  |                   (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\ | ||
|  |                & \quad - (r_1+r_2)\tan{(\frac{\pi}{2}-\eta)} | ||
|  |                + (r_2-w_x)(\frac{\pi}{2}-\eta)\\ | ||
|  |   \end{split} | ||
|  | \end{equation} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="473" HEIGHT="204" BORDER="0" | ||
|  |  SRC="img41.gif" | ||
|  |  ALT="\begin{displaymath}\begin{split}\frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varep... | ||
|  | ...c{\pi}{2}-\eta)} + (r_2-w_x)(\frac{\pi}{2}-\eta)\\  \end{split}\end{displaymath}"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  | (2)</TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | We could now determined the first derivative of this expression to | ||
|  |   evaluate if it is progressive, regressive or neutral. | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation} | ||
|  | \frac{\delta S}{\delta w_x} = 2N\left[ \frac{\pi}{N} - \varepsilon + a - | ||
|  |   \frac{\pi}{2} + \eta \right] | ||
|  | \end{equation} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="251" HEIGHT="56" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img42.gif" | ||
|  |  ALT="$\displaystyle \frac{\delta S}{\delta w_x} = 2N\left[ \frac{\pi}{N} - \varepsilon + a - \frac{\pi}{2} + \eta \right]$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  | (3)</TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | We could verify that: | ||
|  | 
 | ||
|  | <P> | ||
|  | <!-- MATH
 | ||
|  |  \begin{displaymath} | ||
|  | a = \frac{\pi}{2} - \eta + \varepsilon | ||
|  | \end{displaymath} | ||
|  |  --> | ||
|  | <P></P><DIV ALIGN="CENTER"> | ||
|  | <IMG | ||
|  |  WIDTH="111" HEIGHT="46" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img43.gif" | ||
|  |  ALT="$\displaystyle a = \frac{\pi}{2} - \eta + \varepsilon$"> | ||
|  | </DIV><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | Our expression become: | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation} | ||
|  | \frac{\delta S}{\delta w_x} = 2\pi | ||
|  | \end{equation} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="80" HEIGHT="56" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img44.gif" | ||
|  |  ALT="$\displaystyle \frac{\delta S}{\delta w_x} = 2\pi$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  | (4)</TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | The perimeter in zone 1 will always be progressive. So, it is | ||
|  |   important to minimize the radius <IMG | ||
|  |  WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img2.gif" | ||
|  |  ALT="$ r_2$"> in order to switch as fast as | ||
|  |   possible to the zone 2. | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <H2><A NAME="SECTION00042000000000000000"> | ||
|  | Zone 2</A> | ||
|  | </H2> | ||
|  | 
 | ||
|  | <P> | ||
|  | The expression for the perimeter in the second zone is almost the | ||
|  |   same as in the zone one. The difference is that the radius <IMG | ||
|  |  WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img2.gif" | ||
|  |  ALT="$ r_2$"> had | ||
|  |   vanish and the expression reduce to a simpler one: | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation} | ||
|  | \begin{split} | ||
|  |   \frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) + | ||
|  |                  (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\ | ||
|  |                & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\ | ||
|  |  \end{split} | ||
|  | \end{equation} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="473" HEIGHT="83" BORDER="0" | ||
|  |  SRC="img45.gif" | ||
|  |  ALT="\begin{displaymath}\begin{split}\frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varep... | ||
|  | ...\  & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\  \end{split}\end{displaymath}"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  | (5)</TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | The derivative of this expression is: | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation} | ||
|  | \begin{split} | ||
|  |    \frac{\delta S}{\delta w_x} &= 2N\left[ \frac{\pi}{N} -\varepsilon + | ||
|  |                                   a - \tan{(\frac{\pi}{2} - \eta)} \right]\\ | ||
|  |                                &= 2N\left[ \frac{\pi}{2} - \eta + | ||
|  |                                   \frac{\pi}{N} - \tan{(\frac{\pi}{2} | ||
|  |                                   - \eta)} \right]\\ | ||
|  |   \end{split} | ||
|  | \end{equation} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="289" HEIGHT="83" BORDER="0" | ||
|  |  SRC="img46.gif" | ||
|  |  ALT="\begin{displaymath}\begin{split}\frac{\delta S}{\delta w_x} &= 2N\left[ \frac{\p... | ||
|  | ...c{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)} \right]\\  \end{split}\end{displaymath}"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  | (6)</TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | As we could see in this expression, the progressivity in zone 2 is | ||
|  |   determined by the angle <IMG | ||
|  |  WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img47.gif" | ||
|  |  ALT="$ \eta$"> and by the number of star point | ||
|  |   <IMG | ||
|  |  WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img48.gif" | ||
|  |  ALT="$ N$">. It is independant of the angle <!-- MATH
 | ||
|  |  $\varepsilon$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img49.gif" | ||
|  |  ALT="$ \varepsilon$">. | ||
|  | 
 | ||
|  | <P> | ||
|  | The zone 2 will be predominant during the motor burn time and we | ||
|  |   would like to provide neutrallity in this zone. Neutrality is obtain | ||
|  |   when the derivative of the perimeter is equal to zero. This lead to | ||
|  |   the following equation: | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation} | ||
|  | \frac{\delta S}{\delta w_x} = 0 = \frac{\pi}{2} - \eta + | ||
|  |                                    \frac{\pi}{N} - \tan{(\frac{\pi}{2} | ||
|  |                                    - \eta)} | ||
|  | \end{equation} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="287" HEIGHT="56" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img50.gif" | ||
|  |  ALT="$\displaystyle \frac{\delta S}{\delta w_x} = 0 = \frac{\pi}{2} - \eta + \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)}$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  | (7)</TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | Which reduce to the following implicit equation of <IMG | ||
|  |  WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img47.gif" | ||
|  |  ALT="$ \eta$"> as a | ||
|  |   function of <IMG | ||
|  |  WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img48.gif" | ||
|  |  ALT="$ N$">: | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation} | ||
|  | \eta = \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)} + \frac{\pi}{2} | ||
|  | \end{equation} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="200" HEIGHT="46" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img51.gif" | ||
|  |  ALT="$\displaystyle \eta = \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)} + \frac{\pi}{2}$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  | (8)</TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | Solution of this equation give values of the angle <IMG | ||
|  |  WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img47.gif" | ||
|  |  ALT="$ \eta$"> to obtain | ||
|  |   neutrality in zone 2 as a function of the number of star points. | ||
|  | 
 | ||
|  | <P> | ||
|  | <DIV ALIGN="CENTER"> | ||
|  | <TABLE CELLPADDING=3 BORDER="1"> | ||
|  | <TR><TD ALIGN="CENTER"><IMG | ||
|  |  WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img48.gif" | ||
|  |  ALT="$ N$"></TD> | ||
|  | <TD ALIGN="CENTER"><IMG | ||
|  |  WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img47.gif" | ||
|  |  ALT="$ \eta$"> (deg)</TD> | ||
|  | <TD ALIGN="CENTER"><IMG | ||
|  |  WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img52.gif" | ||
|  |  ALT="$ \pi/N$"> (deg)</TD> | ||
|  | </TR> | ||
|  | <TR><TD ALIGN="CENTER">3</TD> | ||
|  | <TD ALIGN="CENTER">24.55</TD> | ||
|  | <TD ALIGN="CENTER">60.00</TD> | ||
|  | </TR> | ||
|  | <TR><TD ALIGN="CENTER">4</TD> | ||
|  | <TD ALIGN="CENTER">28.22</TD> | ||
|  | <TD ALIGN="CENTER">45.00</TD> | ||
|  | </TR> | ||
|  | <TR><TD ALIGN="CENTER">5</TD> | ||
|  | <TD ALIGN="CENTER">31.13</TD> | ||
|  | <TD ALIGN="CENTER">36.00</TD> | ||
|  | </TR> | ||
|  | <TR><TD ALIGN="CENTER">6</TD> | ||
|  | <TD ALIGN="CENTER">33.53</TD> | ||
|  | <TD ALIGN="CENTER">30.00</TD> | ||
|  | </TR> | ||
|  | <TR><TD ALIGN="CENTER">7</TD> | ||
|  | <TD ALIGN="CENTER">35.56</TD> | ||
|  | <TD ALIGN="CENTER">25.71</TD> | ||
|  | </TR> | ||
|  | <TR><TD ALIGN="CENTER">8</TD> | ||
|  | <TD ALIGN="CENTER">37.31</TD> | ||
|  | <TD ALIGN="CENTER">22.50</TD> | ||
|  | </TR> | ||
|  | <TR><TD ALIGN="CENTER">9</TD> | ||
|  | <TD ALIGN="CENTER">38.84</TD> | ||
|  | <TD ALIGN="CENTER">20.00</TD> | ||
|  | </TR> | ||
|  | </TABLE> | ||
|  | </DIV> | ||
|  | 
 | ||
|  | <P> | ||
|  | It is important to note that when the angle <!-- MATH
 | ||
|  |  $\eta < \pi/N$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img53.gif" | ||
|  |  ALT="$ \eta < \pi/N$">, a secant | ||
|  |   fillet <!-- MATH
 | ||
|  |  $\varepsilon < \pi/N$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="70" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img54.gif" | ||
|  |  ALT="$ \varepsilon < \pi/N$"> will be necessary to prevent star point | ||
|  |   from overlapping. In general, <!-- MATH
 | ||
|  |  $\varepsilon$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img49.gif" | ||
|  |  ALT="$ \varepsilon$"> should always be smaller | ||
|  |   that <IMG | ||
|  |  WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img52.gif" | ||
|  |  ALT="$ \pi/N$">. | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <H2><A NAME="SECTION00043000000000000000"> | ||
|  | Zone 3</A> | ||
|  | </H2> | ||
|  | 
 | ||
|  | <P> | ||
|  | The perimeter in the zone 3 begin when <IMG | ||
|  |  WIDTH="71" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img55.gif" | ||
|  |  ALT="$ w_x = Y*$">. The angle <IMG | ||
|  |  WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img17.gif" | ||
|  |  ALT="$ a$"> | ||
|  |   become progressivly smaller when propellant burned. Perimeter could | ||
|  |   be expressed like this: | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation} | ||
|  | \frac{S}{2N} = (R-w+w_x)(\frac{\pi}{N}-\varepsilon) + | ||
|  |                (r_1+w_x)\left[ \varepsilon + | ||
|  |                \arcsin{(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}}) \right] | ||
|  | \end{equation} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="550" HEIGHT="58" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img56.gif" | ||
|  |  ALT="$\displaystyle \frac{S}{2N} = (R-w+w_x)(\frac{\pi}{N}-\varepsilon) + (r_1+w_x)\left[ \varepsilon + \arcsin{(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}}) \right]$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  | (9)</TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | The derivative of this expression become: | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation} | ||
|  | \begin{split} | ||
|  | \frac{\delta S}{\delta w_x} &= 2N \biggl[ \frac{\pi}{N}  + | ||
|  |        \arcsin{\biggl(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}\biggr)} - \\ | ||
|  |       &\quad  \frac{w_x(R-w-r_1)\sin{\varepsilon}}{(r_1+w_x)^2\sqrt{1-\frac{(R-w-r_1)^2\sin^2{\varepsilon}}{(r_1+w_x)^2}}} \biggr]\\ | ||
|  | \end{split} | ||
|  | \end{equation} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="339" HEIGHT="110" BORDER="0" | ||
|  |  SRC="img57.gif" | ||
|  |  ALT="\begin{displaymath}\begin{split}\frac{\delta S}{\delta w_x} &= 2N \biggl[ \frac{... | ||
|  | ..._1)^2\sin^2{\varepsilon}}{(r_1+w_x)^2}}} \biggr]\\  \end{split}\end{displaymath}"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  | (10)</TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | It could be demonstrate that the perimeter is progressive in this | ||
|  |   section. It would be interesting to eliminate the zone 3 in order to | ||
|  |   keep neutrality as long as possible. | ||
|  | 
 | ||
|  | <P> | ||
|  | The condition for the elimination of zone 3 is: | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation} | ||
|  | Y* = (R-w-r_1)\frac{\sin{\varepsilon}}{\cos{\eta}} - r_1 = w | ||
|  | \end{equation} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="260" HEIGHT="55" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img58.gif" | ||
|  |  ALT="$\displaystyle Y* = (R-w-r_1)\frac{\sin{\varepsilon}}{\cos{\eta}} - r_1 = w$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  | (11)</TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | This equation reduce to: | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation} | ||
|  | \sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta} | ||
|  | \end{equation} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="187" HEIGHT="51" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img59.gif" | ||
|  |  ALT="$\displaystyle \sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  | (12)</TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | Now, the angle <!-- MATH
 | ||
|  |  $\varepsilon$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img49.gif" | ||
|  |  ALT="$ \varepsilon$"> is determine by the web thickness <IMG | ||
|  |  WIDTH="17" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img60.gif" | ||
|  |  ALT="$ w$">, | ||
|  |   the radius <IMG | ||
|  |  WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img14.gif" | ||
|  |  ALT="$ r_1$"> and the angle <IMG | ||
|  |  WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img47.gif" | ||
|  |  ALT="$ \eta$">. As <IMG | ||
|  |  WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img47.gif" | ||
|  |  ALT="$ \eta$"> was determine by | ||
|  |   the number of star points <IMG | ||
|  |  WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img48.gif" | ||
|  |  ALT="$ N$"> and the radius may be dictate by | ||
|  |   technical decision, the web thickness <IMG | ||
|  |  WIDTH="17" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img60.gif" | ||
|  |  ALT="$ w$"> will determine | ||
|  |   <!-- MATH
 | ||
|  |  $\varepsilon$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img49.gif" | ||
|  |  ALT="$ \varepsilon$">. | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <H2><A NAME="SECTION00044000000000000000"> | ||
|  | Zone 4</A> | ||
|  | </H2> | ||
|  | 
 | ||
|  | <P> | ||
|  | The analytical solution of the perimeter in the zone 4 could be | ||
|  |   found with the help of the cosinus law: | ||
|  | 
 | ||
|  | <P> | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation*} | ||
|  | c^2 = a^2 + b^2 - 2ab\cos{\theta} | ||
|  | \end{equation*} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="180" HEIGHT="38" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img61.gif" | ||
|  |  ALT="$\displaystyle c^2 = a^2 + b^2 - 2ab\cos{\theta}$"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  |    </TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | The perimeter is then: | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><!-- MATH
 | ||
|  |  \begin{equation} | ||
|  | \begin{split} | ||
|  | \frac{S}{2N} = (r_1+w_x) \biggl[ & \varepsilon + | ||
|  |       \arcsin{\biggl(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}\biggr)} | ||
|  |       - \pi\\ | ||
|  |       & \quad + \arccos{\biggl(\frac{(r_1+w_x)^2+(R-r_1-w)^2-R^2}{2(r_1+w_x)(R-r_1-w)}\biggr)} | ||
|  |       \biggr]\\ | ||
|  | \end{split} | ||
|  | \end{equation} | ||
|  |  --> | ||
|  | <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"> | ||
|  | <TR VALIGN="MIDDLE"> | ||
|  | <TD NOWRAP ALIGN="CENTER"><IMG | ||
|  |  WIDTH="501" HEIGHT="98" BORDER="0" | ||
|  |  SRC="img62.gif" | ||
|  |  ALT="\begin{displaymath}\begin{split}\frac{S}{2N} = (r_1+w_x) \biggl[ & \varepsilon +... | ||
|  | ...1-w)^2-R^2}{2(r_1+w_x)(R-r_1-w)}\biggr)} \biggr]\\  \end{split}\end{displaymath}"></TD> | ||
|  | <TD NOWRAP WIDTH="10" ALIGN="RIGHT"> | ||
|  | (13)</TD></TR> | ||
|  | </TABLE></DIV> | ||
|  | <BR CLEAR="ALL"><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <H1><A NAME="SECTION00050000000000000000"> | ||
|  | Design example</A> | ||
|  | </H1> | ||
|  | 
 | ||
|  | <P> | ||
|  | In this section, a star configuration will be design with the | ||
|  |   theory developp in the previous sections for a motor of <IMG | ||
|  |  WIDTH="47" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img63.gif" | ||
|  |  ALT="$ 3 inch$"> | ||
|  |   internal diameter. | ||
|  | 
 | ||
|  | <P> | ||
|  | The goal is to have a perimeter that will remain as constant as | ||
|  |   possible to mainatin neutrality. It will also be interesting to | ||
|  |   minimize the number of star points in order to reduce the difficulty | ||
|  |   to cast the propellant. We could also try to optimize the volumetric | ||
|  |   loading. | ||
|  | 
 | ||
|  | <P> | ||
|  | First of all, we could determine the number of star points. In order | ||
|  |   to maximize the quantity of matter, the angle <!-- MATH
 | ||
|  |  $\varepsilon$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img49.gif" | ||
|  |  ALT="$ \varepsilon$"> should | ||
|  |   be equal to <IMG | ||
|  |  WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img52.gif" | ||
|  |  ALT="$ \pi/N$">. In order to obtain this condition, the angle | ||
|  |   <IMG | ||
|  |  WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img47.gif" | ||
|  |  ALT="$ \eta$"> should be larger than <IMG | ||
|  |  WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img52.gif" | ||
|  |  ALT="$ \pi/N$">.  | ||
|  | 
 | ||
|  | <P> | ||
|  | If we refer to the table of the angle <IMG | ||
|  |  WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img47.gif" | ||
|  |  ALT="$ \eta$"> in function of <IMG | ||
|  |  WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img48.gif" | ||
|  |  ALT="$ N$">, to | ||
|  |   obtain neutrality in zone 2, we must choose <IMG | ||
|  |  WIDTH="52" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img64.gif" | ||
|  |  ALT="$ N=6$"> to have <!-- MATH
 | ||
|  |  $\eta > | ||
|  | \pi/N$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img65.gif" | ||
|  |  ALT="$ \eta > | ||
|  | \pi/N$">. | ||
|  | 
 | ||
|  | <P> | ||
|  | Three conditions are now determine: | ||
|  | 
 | ||
|  | <P> | ||
|  | <!-- MATH
 | ||
|  |  \begin{displaymath} | ||
|  | N = 6 | ||
|  | \end{displaymath} | ||
|  |  --> | ||
|  | <P></P><DIV ALIGN="CENTER"> | ||
|  | <IMG | ||
|  |  WIDTH="52" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img66.gif" | ||
|  |  ALT="$\displaystyle N = 6$"> | ||
|  | </DIV><P></P> | ||
|  | <!-- MATH
 | ||
|  |  \begin{displaymath} | ||
|  | \eta = 33.53 deg | ||
|  | \end{displaymath} | ||
|  |  --> | ||
|  | <P></P><DIV ALIGN="CENTER"> | ||
|  | <IMG | ||
|  |  WIDTH="103" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img67.gif" | ||
|  |  ALT="$\displaystyle \eta = 33.53 deg$"> | ||
|  | </DIV><P></P> | ||
|  | <!-- MATH
 | ||
|  |  \begin{displaymath} | ||
|  | \varepsilon = 30 deg | ||
|  | \end{displaymath} | ||
|  |  --> | ||
|  | <P></P><DIV ALIGN="CENTER"> | ||
|  | <IMG | ||
|  |  WIDTH="79" HEIGHT="32" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img68.gif" | ||
|  |  ALT="$\displaystyle \varepsilon = 30 deg$"> | ||
|  | </DIV><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | We must now found the web thickness <IMG | ||
|  |  WIDTH="17" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img60.gif" | ||
|  |  ALT="$ w$"> and radius <IMG | ||
|  |  WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img14.gif" | ||
|  |  ALT="$ r_1$"> that fit | ||
|  |   the conditions. A radius <!-- MATH
 | ||
|  |  $r_1 = 1/16 in$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="95" HEIGHT="34" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img69.gif" | ||
|  |  ALT="$ r_1 = 1/16 in$"> is reasonable technically. | ||
|  | 
 | ||
|  | <P> | ||
|  | The equation to be solve is the following: | ||
|  | 
 | ||
|  | <P> | ||
|  | <!-- MATH
 | ||
|  |  \begin{displaymath} | ||
|  | sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta} | ||
|  | \end{displaymath} | ||
|  |  --> | ||
|  | <P></P><DIV ALIGN="CENTER"> | ||
|  | <IMG | ||
|  |  WIDTH="187" HEIGHT="51" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img59.gif" | ||
|  |  ALT="$\displaystyle \sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}$"> | ||
|  | </DIV><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | The value of <IMG | ||
|  |  WIDTH="17" HEIGHT="16" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img60.gif" | ||
|  |  ALT="$ w$"> that solve this equation is: | ||
|  | 
 | ||
|  | <P> | ||
|  | <!-- MATH
 | ||
|  |  \begin{displaymath} | ||
|  | w = 0.500 | ||
|  | \end{displaymath} | ||
|  |  --> | ||
|  | <P></P><DIV ALIGN="CENTER"> | ||
|  | <IMG | ||
|  |  WIDTH="80" HEIGHT="30" ALIGN="MIDDLE" BORDER="0" | ||
|  |  SRC="img70.gif" | ||
|  |  ALT="$\displaystyle w = 0.500$"> | ||
|  | </DIV><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | The seven independant variable are now fixed. The resulting shape | ||
|  |   could be seen in figure <A HREF="star.html#res">5</A>. | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><A NAME="res"></A><A NAME="253"></A> | ||
|  | <TABLE> | ||
|  | <CAPTION ALIGN="BOTTOM"><STRONG>Figure 5:</STRONG> | ||
|  | Resulting star configuration for the 3 inch motor.</CAPTION> | ||
|  | <TR><TD><DIV ALIGN="CENTER"> | ||
|  | <!-- MATH
 | ||
|  |  $\includegraphics[]{img/res.ps}$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="348" HEIGHT="348" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img71.gif" | ||
|  |  ALT="\includegraphics[]{img/res.ps}"> | ||
|  |        | ||
|  | </DIV></TD></TR> | ||
|  | </TABLE> | ||
|  | </DIV><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | With the functions developp in the report, the evolution of the | ||
|  |   perimeter as a function of the web burned could be plot. | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <P></P> | ||
|  | <DIV ALIGN="CENTER"><A NAME="grah"></A><A NAME="260"></A> | ||
|  | <TABLE> | ||
|  | <CAPTION ALIGN="BOTTOM"><STRONG>Figure 6:</STRONG> | ||
|  | Graphic of the perimeter as a function of web burned.</CAPTION> | ||
|  | <TR><TD><DIV ALIGN="CENTER"> | ||
|  | <!-- MATH
 | ||
|  |  $\includegraphics[height=4in]{img/perimeter.ps}$ | ||
|  |  --> | ||
|  | <IMG | ||
|  |  WIDTH="628" HEIGHT="447" ALIGN="BOTTOM" BORDER="0" | ||
|  |  SRC="img72.gif" | ||
|  |  ALT="\includegraphics[height=4in]{img/perimeter.ps}"> | ||
|  |        | ||
|  | </DIV></TD></TR> | ||
|  | </TABLE> | ||
|  | </DIV><P></P> | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <H1><A NAME="SECTION00060000000000000000"> | ||
|  | conclusion</A> | ||
|  | </H1> | ||
|  | 
 | ||
|  | <P> | ||
|  | The star configuration offer the possibility to design rocket motor | ||
|  | that works at almost constant pressure. It is then possible to | ||
|  | optimize on case thickness and throat diameter in order to obtain the best | ||
|  | performance. | ||
|  | 
 | ||
|  | <P> | ||
|  |   | ||
|  | <H2><A NAME="SECTION00070000000000000000"> | ||
|  | Bibliography</A> | ||
|  | </H2><DL COMPACT><DD><P></P><DT><A NAME="nasa">1</A> | ||
|  | <DD> NASA SP-8076, <EM>Solid Propellant Grain Design And | ||
|  | Internal Ballistics</EM>, March 1972 | ||
|  | </DL> | ||
|  | 
 | ||
|  | <P> | ||
|  | 
 | ||
|  | <H1><A NAME="SECTION00080000000000000000"> | ||
|  | About this document ...</A> | ||
|  | </H1> | ||
|  |  <STRONG>Burning analysis of star configuration</STRONG><P> | ||
|  | This document was generated using the | ||
|  | <A HREF="http://www-texdev.mpce.mq.edu.au/l2h/docs/manual/"><STRONG>LaTeX</STRONG>2<tt>HTML</tt></A> translator Version 99.2beta8 (1.42) | ||
|  | <P> | ||
|  | Copyright © 1993, 1994, 1995, 1996, | ||
|  | <A HREF="http://cbl.leeds.ac.uk/nikos/personal.html">Nikos Drakos</A>,  | ||
|  | Computer Based Learning Unit, University of Leeds. | ||
|  | <BR>Copyright © 1997, 1998, 1999, | ||
|  | <A HREF="http://www.maths.mq.edu.au/~ross/">Ross Moore</A>,  | ||
|  | Mathematics Department, Macquarie University, Sydney. | ||
|  | <P> | ||
|  | The command line arguments were: <BR> | ||
|  |  <STRONG>latex2html</STRONG> <TT>-white -image_type gif -no_navigation -split 0 -dir html -mkdir star.tex</TT> | ||
|  | <P> | ||
|  | The translation was initiated by Antoine Lefebvre on 2001-07-12<BR><HR> | ||
|  | <ADDRESS> | ||
|  | Antoine Lefebvre | ||
|  | 2001-07-12 | ||
|  | </ADDRESS> | ||
|  | </BODY> | ||
|  | </HTML> |