Based on the original Rocket Workbench on SourceForge in CVS at: https://sourceforge.net/projects/rocketworkbench
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1281 lines
35 KiB

  1. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
  2. <!--Converted with LaTeX2HTML 99.2beta8 (1.42)
  3. original version by: Nikos Drakos, CBLU, University of Leeds
  4. * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
  5. * with significant contributions from:
  6. Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
  7. <HTML>
  8. <HEAD>
  9. <TITLE>Burning analysis of star configuration</TITLE>
  10. <META NAME="description" CONTENT="Burning analysis of star configuration">
  11. <META NAME="keywords" CONTENT="star">
  12. <META NAME="resource-type" CONTENT="document">
  13. <META NAME="distribution" CONTENT="global">
  14. <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
  15. <META NAME="Generator" CONTENT="LaTeX2HTML v99.2beta8">
  16. <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
  17. <LINK REL="STYLESHEET" HREF="star.css">
  18. </HEAD>
  19. <BODY >
  20. <P>
  21. <H1 ALIGN=CENTER>Burning analysis of star configuration</H1>
  22. <P ALIGN=CENTER><STRONG>Antoine Lefebvre</STRONG></P>
  23. <P ALIGN=LEFT></P>
  24. <P>
  25. <BR>
  26. <H2><A NAME="SECTION00010000000000000000">
  27. Contents</A>
  28. </H2>
  29. <!--Table of Contents-->
  30. <UL>
  31. <LI><A NAME="tex2html19"
  32. HREF="star.html">Contents</A>
  33. <LI><A NAME="tex2html20"
  34. HREF="star.html#SECTION00020000000000000000">Introduction</A>
  35. <LI><A NAME="tex2html21"
  36. HREF="star.html#SECTION00030000000000000000">Geometric definition</A>
  37. <LI><A NAME="tex2html22"
  38. HREF="star.html#SECTION00040000000000000000">Analysis</A>
  39. <UL>
  40. <LI><A NAME="tex2html23"
  41. HREF="star.html#SECTION00041000000000000000">Zone 1</A>
  42. <LI><A NAME="tex2html24"
  43. HREF="star.html#SECTION00042000000000000000">Zone 2</A>
  44. <LI><A NAME="tex2html25"
  45. HREF="star.html#SECTION00043000000000000000">Zone 3</A>
  46. <LI><A NAME="tex2html26"
  47. HREF="star.html#SECTION00044000000000000000">Zone 4</A>
  48. </UL>
  49. <LI><A NAME="tex2html27"
  50. HREF="star.html#SECTION00050000000000000000">Design example</A>
  51. <LI><A NAME="tex2html28"
  52. HREF="star.html#SECTION00060000000000000000">conclusion</A>
  53. <LI><A NAME="tex2html29"
  54. HREF="star.html#SECTION00070000000000000000">Bibliography</A>
  55. <LI><A NAME="tex2html30"
  56. HREF="star.html#SECTION00080000000000000000">About this document ...</A>
  57. </UL>
  58. <!--End of Table of Contents-->
  59. <P>
  60. <P>
  61. <H1><A NAME="SECTION00020000000000000000">
  62. Introduction</A>
  63. </H1>
  64. <P>
  65. The design of solid propellant grain that provide neutral burning
  66. is important to optimize rocket motor performance. The star
  67. configuration have been widely used to achieve this goal. In this
  68. report, I will present an analysis of the burning comportement of star
  69. shape as well as parameter recommandation to achieve better
  70. performance.
  71. <P>
  72. <H1><A NAME="SECTION00030000000000000000">
  73. Geometric definition</A>
  74. </H1>
  75. <P>
  76. The star could be characterize by seven independant variable as
  77. defined in figure <A HREF="star.html#star">2</A>. As every star points are identical,
  78. only one is necessary for the analysis.
  79. <P>
  80. <P></P>
  81. <DIV ALIGN="CENTER"><A NAME="variable"></A><A NAME="12"></A>
  82. <TABLE>
  83. <CAPTION ALIGN="BOTTOM"><STRONG>Figure 1:</STRONG>
  84. Geometric definition of star.</CAPTION>
  85. <TR><TD><DIV ALIGN="CENTER">
  86. <!-- MATH
  87. $\includegraphics[height=5in]{img/variable.ps}$
  88. -->
  89. <IMG
  90. WIDTH="498" HEIGHT="401" ALIGN="BOTTOM" BORDER="0"
  91. SRC="img3.gif"
  92. ALT="\includegraphics[height=5in]{img/variable.ps}">
  93. </DIV></TD></TR>
  94. </TABLE>
  95. </DIV><P></P>
  96. <P>
  97. <P></P>
  98. <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  99. <TR VALIGN="MIDDLE">
  100. <TD NOWRAP ALIGN="RIGHT"><IMG
  101. WIDTH="17" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  102. SRC="img4.gif"
  103. ALT="$\displaystyle w$"></TD>
  104. <TD NOWRAP ALIGN="LEFT"><IMG
  105. WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  106. SRC="img5.gif"
  107. ALT="$\displaystyle =$">&nbsp; &nbsp;Web thickness</TD>
  108. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  109. &nbsp;&nbsp;&nbsp;</TD></TR>
  110. <TR VALIGN="MIDDLE">
  111. <TD NOWRAP ALIGN="RIGHT"><IMG
  112. WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  113. SRC="img6.gif"
  114. ALT="$\displaystyle r_1$"></TD>
  115. <TD NOWRAP ALIGN="LEFT"><IMG
  116. WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  117. SRC="img5.gif"
  118. ALT="$\displaystyle =$">&nbsp; &nbsp;Radius</TD>
  119. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  120. &nbsp;&nbsp;&nbsp;</TD></TR>
  121. <TR VALIGN="MIDDLE">
  122. <TD NOWRAP ALIGN="RIGHT"><IMG
  123. WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  124. SRC="img7.gif"
  125. ALT="$\displaystyle r_2$"></TD>
  126. <TD NOWRAP ALIGN="LEFT"><IMG
  127. WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  128. SRC="img5.gif"
  129. ALT="$\displaystyle =$">&nbsp; &nbsp;Tip radius</TD>
  130. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  131. &nbsp;&nbsp;&nbsp;</TD></TR>
  132. <TR VALIGN="MIDDLE">
  133. <TD NOWRAP ALIGN="RIGHT"><IMG
  134. WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  135. SRC="img8.gif"
  136. ALT="$\displaystyle R$"></TD>
  137. <TD NOWRAP ALIGN="LEFT"><IMG
  138. WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  139. SRC="img5.gif"
  140. ALT="$\displaystyle =$">&nbsp; &nbsp;External radius</TD>
  141. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  142. &nbsp;&nbsp;&nbsp;</TD></TR>
  143. <TR VALIGN="MIDDLE">
  144. <TD NOWRAP ALIGN="RIGHT"><IMG
  145. WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  146. SRC="img9.gif"
  147. ALT="$\displaystyle \eta$"></TD>
  148. <TD NOWRAP ALIGN="LEFT"><IMG
  149. WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  150. SRC="img5.gif"
  151. ALT="$\displaystyle =$">&nbsp; &nbsp;angle</TD>
  152. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  153. &nbsp;&nbsp;&nbsp;</TD></TR>
  154. <TR VALIGN="MIDDLE">
  155. <TD NOWRAP ALIGN="RIGHT"><IMG
  156. WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  157. SRC="img10.gif"
  158. ALT="$\displaystyle \varepsilon$"></TD>
  159. <TD NOWRAP ALIGN="LEFT"><IMG
  160. WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  161. SRC="img5.gif"
  162. ALT="$\displaystyle =$">&nbsp; &nbsp;Secant fillet angle</TD>
  163. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  164. &nbsp;&nbsp;&nbsp;</TD></TR>
  165. <TR VALIGN="MIDDLE">
  166. <TD NOWRAP ALIGN="RIGHT"><IMG
  167. WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  168. SRC="img11.gif"
  169. ALT="$\displaystyle N$"></TD>
  170. <TD NOWRAP ALIGN="LEFT"><IMG
  171. WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  172. SRC="img5.gif"
  173. ALT="$\displaystyle =$">&nbsp; &nbsp;Number of star points</TD>
  174. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  175. &nbsp;&nbsp;&nbsp;</TD></TR>
  176. </TABLE></DIV>
  177. <BR CLEAR="ALL"><P></P>
  178. <P>
  179. <P></P>
  180. <DIV ALIGN="CENTER"><A NAME="star"></A><A NAME="28"></A>
  181. <TABLE>
  182. <CAPTION ALIGN="BOTTOM"><STRONG>Figure 2:</STRONG>
  183. Burning zone of the star configuration.</CAPTION>
  184. <TR><TD><DIV ALIGN="CENTER">
  185. <!-- MATH
  186. $\includegraphics[height=4in]{img/mainstar.ps}$
  187. -->
  188. <IMG
  189. WIDTH="516" HEIGHT="392" ALIGN="BOTTOM" BORDER="0"
  190. SRC="img12.gif"
  191. ALT="\includegraphics[height=4in]{img/mainstar.ps}">
  192. </DIV></TD></TR>
  193. </TABLE>
  194. </DIV><P></P>
  195. <P>
  196. <H1><A NAME="SECTION00040000000000000000">
  197. Analysis</A>
  198. </H1>
  199. <P>
  200. In this section, an expression for the perimeter of the star will be
  201. developp for each burning zone as a function of the web thickness
  202. burned (<IMG
  203. WIDTH="25" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  204. SRC="img13.gif"
  205. ALT="$ w_x$">).
  206. <P>
  207. <H2><A NAME="SECTION00041000000000000000">
  208. Zone 1</A>
  209. </H2>
  210. <P>
  211. The perimeter in the zone one could be divide in three
  212. sections. Starting by the right, we have the section before the
  213. radius <IMG
  214. WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  215. SRC="img14.gif"
  216. ALT="$ r_1$">, which have a radius equal to <IMG
  217. WIDTH="94" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  218. SRC="img15.gif"
  219. ALT="$ R-w+w_x$">. The length of
  220. this section is then: <!-- MATH
  221. $(R-w+w_x)(\pi/N - \varepsilon)$
  222. -->
  223. <IMG
  224. WIDTH="185" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  225. SRC="img16.gif"
  226. ALT="$ (R-w+w_x)(\pi/N - \varepsilon)$">.
  227. <P>
  228. Then, we have the perimeter of the arc of initial radius <IMG
  229. WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  230. SRC="img14.gif"
  231. ALT="$ r_1$">. The
  232. angle will remain constant to <IMG
  233. WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  234. SRC="img17.gif"
  235. ALT="$ a$">. The length is then: <!-- MATH
  236. $(r_1+w_x)a$
  237. -->
  238. <IMG
  239. WIDTH="85" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  240. SRC="img18.gif"
  241. ALT="$ (r_1+w_x)a$">.
  242. <P>
  243. The third section is more complicated. The lenght of the line
  244. starting at the end of the radius <IMG
  245. WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  246. SRC="img14.gif"
  247. ALT="$ r_1$"> and crossing the vertical
  248. line will be evaluated first. Then, the perimeter of the radius
  249. <IMG
  250. WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  251. SRC="img2.gif"
  252. ALT="$ r_2$"> will be add to the result, and the length of the line starting
  253. at the beginning of the radius will be substract.
  254. <P>
  255. <P></P>
  256. <DIV ALIGN="CENTER"><A NAME="len"></A><A NAME="37"></A>
  257. <TABLE>
  258. <CAPTION ALIGN="BOTTOM"><STRONG>Figure 3:</STRONG>
  259. Determination of the length <IMG
  260. WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
  261. SRC="img1.gif"
  262. ALT="$ L$">.</CAPTION>
  263. <TR><TD><DIV ALIGN="CENTER">
  264. <!-- MATH
  265. $\includegraphics[height=5in]{img/starL.ps}$
  266. -->
  267. <IMG
  268. WIDTH="255" HEIGHT="529" ALIGN="BOTTOM" BORDER="0"
  269. SRC="img19.gif"
  270. ALT="\includegraphics[height=5in]{img/starL.ps}">
  271. </DIV></TD></TR>
  272. </TABLE>
  273. </DIV><P></P>
  274. <P>
  275. In order to determine the length, refer to the figure <A HREF="star.html#len">3</A>. The
  276. lenght <IMG
  277. WIDTH="16" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
  278. SRC="img1.gif"
  279. ALT="$ L$"> we are looking for will be equal <IMG
  280. WIDTH="45" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  281. SRC="img20.gif"
  282. ALT="$ x + y$">.
  283. <P>
  284. <P></P>
  285. <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  286. <TR VALIGN="MIDDLE">
  287. <TD NOWRAP ALIGN="RIGHT"><IMG
  288. WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  289. SRC="img21.gif"
  290. ALT="$\displaystyle b + z$"></TD>
  291. <TD NOWRAP ALIGN="LEFT"><IMG
  292. WIDTH="156" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  293. SRC="img22.gif"
  294. ALT="$\displaystyle = (R-w-r_1)\sin{\varepsilon}$"></TD>
  295. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  296. &nbsp;&nbsp;&nbsp;</TD></TR>
  297. <TR VALIGN="MIDDLE">
  298. <TD NOWRAP ALIGN="RIGHT"><IMG
  299. WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  300. SRC="img23.gif"
  301. ALT="$\displaystyle x$"></TD>
  302. <TD NOWRAP ALIGN="LEFT"><IMG
  303. WIDTH="134" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  304. SRC="img24.gif"
  305. ALT="$\displaystyle = (r_1+w_x)\tan{\eta}$"></TD>
  306. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  307. &nbsp;&nbsp;&nbsp;</TD></TR>
  308. <TR VALIGN="MIDDLE">
  309. <TD NOWRAP ALIGN="RIGHT"><IMG
  310. WIDTH="40" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  311. SRC="img25.gif"
  312. ALT="$\displaystyle \cos{\eta}$"></TD>
  313. <TD NOWRAP ALIGN="LEFT"><IMG
  314. WIDTH="84" HEIGHT="51" ALIGN="MIDDLE" BORDER="0"
  315. SRC="img26.gif"
  316. ALT="$\displaystyle = \frac{r_1+w_x}{z}$"></TD>
  317. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  318. &nbsp;&nbsp;&nbsp;</TD></TR>
  319. <TR VALIGN="MIDDLE">
  320. <TD NOWRAP ALIGN="RIGHT"><IMG
  321. WIDTH="38" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
  322. SRC="img27.gif"
  323. ALT="$\displaystyle \sin{\eta}$"></TD>
  324. <TD NOWRAP ALIGN="LEFT"><IMG
  325. WIDTH="36" HEIGHT="56" ALIGN="MIDDLE" BORDER="0"
  326. SRC="img28.gif"
  327. ALT="$\displaystyle = \frac{b}{y}$"></TD>
  328. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  329. &nbsp;&nbsp;&nbsp;</TD></TR>
  330. <TR VALIGN="MIDDLE">
  331. <TD NOWRAP ALIGN="RIGHT"><IMG
  332. WIDTH="38" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"
  333. SRC="img27.gif"
  334. ALT="$\displaystyle \sin{\eta}$"></TD>
  335. <TD NOWRAP ALIGN="LEFT"><IMG
  336. WIDTH="225" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
  337. SRC="img29.gif"
  338. ALT="$\displaystyle = \frac{(R-w-r_1)\sin{\varepsilon} - \frac{r_1+w_x}{\cos{\eta}}}{y}$"></TD>
  339. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  340. &nbsp;&nbsp;&nbsp;</TD></TR>
  341. <TR VALIGN="MIDDLE">
  342. <TD NOWRAP ALIGN="RIGHT"><IMG
  343. WIDTH="80" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  344. SRC="img30.gif"
  345. ALT="$\displaystyle L = y + x$"></TD>
  346. <TD NOWRAP ALIGN="LEFT"><IMG
  347. WIDTH="388" HEIGHT="55" ALIGN="MIDDLE" BORDER="0"
  348. SRC="img31.gif"
  349. ALT="$\displaystyle = (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} - \frac{r_1+w_x}{\cos{\eta}\sin{\eta}} + (r_1+w_x)\tan{\eta}$"></TD>
  350. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  351. &nbsp;&nbsp;&nbsp;</TD></TR>
  352. </TABLE></DIV>
  353. <BR CLEAR="ALL"><P></P>
  354. <P>
  355. We could now simplify this equation using two trigonometric
  356. identity:
  357. <P>
  358. <P></P>
  359. <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  360. <TR VALIGN="MIDDLE">
  361. <TD NOWRAP ALIGN="RIGHT"><IMG
  362. WIDTH="76" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
  363. SRC="img32.gif"
  364. ALT="$\displaystyle \sin^2{\eta} -1$"></TD>
  365. <TD NOWRAP ALIGN="LEFT"><IMG
  366. WIDTH="82" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
  367. SRC="img33.gif"
  368. ALT="$\displaystyle = -\cos^2{\eta}$"></TD>
  369. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  370. &nbsp;&nbsp;&nbsp;</TD></TR>
  371. <TR VALIGN="MIDDLE">
  372. <TD NOWRAP ALIGN="RIGHT"><IMG
  373. WIDTH="42" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  374. SRC="img34.gif"
  375. ALT="$\displaystyle \tan{\eta}$"></TD>
  376. <TD NOWRAP ALIGN="LEFT"><IMG
  377. WIDTH="111" HEIGHT="54" ALIGN="MIDDLE" BORDER="0"
  378. SRC="img35.gif"
  379. ALT="$\displaystyle = \frac{1}{\tan{(\frac{\pi}{2}-\eta)}}$"></TD>
  380. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  381. &nbsp;&nbsp;&nbsp;</TD></TR>
  382. </TABLE></DIV>
  383. <BR CLEAR="ALL"><P></P>
  384. <P>
  385. <P></P>
  386. <DIV ALIGN="CENTER"><!-- MATH
  387. \begin{equation}
  388. \begin{split}
  389. L &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} +
  390. (r_1+w_x)\left[
  391. \frac{\sin^2{\eta}-1}{\cos{\eta}\sin{\eta}} \right]\\
  392. &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} +
  393. (r_1+w_x)\left[ \frac{-\cos{\eta}}{\sin{\eta}} \right]\\
  394. &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} +
  395. (r_1+w_x)\left[ \frac{-1}{\tan{\eta}} \right]\\
  396. &= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}} -
  397. (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\
  398. \end{split}
  399. \end{equation}
  400. -->
  401. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  402. <TR VALIGN="MIDDLE">
  403. <TD NOWRAP ALIGN="CENTER"><IMG
  404. WIDTH="356" HEIGHT="191" BORDER="0"
  405. SRC="img36.gif"
  406. ALT="\begin{displaymath}\begin{split}L &amp;= (R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta...
  407. ...sin{\eta}} - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\ \end{split}\end{displaymath}"></TD>
  408. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  409. (1)</TD></TR>
  410. </TABLE></DIV>
  411. <BR CLEAR="ALL"><P></P>
  412. <P>
  413. We could now determine the length of the arc and how much we should
  414. substract from the length L. Refer to figure <A HREF="star.html#arc">4</A> for the
  415. variables.
  416. <P>
  417. <P></P>
  418. <DIV ALIGN="CENTER"><A NAME="arc"></A><A NAME="96"></A>
  419. <TABLE>
  420. <CAPTION ALIGN="BOTTOM"><STRONG>Figure 4:</STRONG>
  421. Arc of radius <IMG
  422. WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  423. SRC="img2.gif"
  424. ALT="$ r_2$">.</CAPTION>
  425. <TR><TD><DIV ALIGN="CENTER">
  426. <!-- MATH
  427. $\includegraphics[height=3in]{img/arc.ps}$
  428. -->
  429. <IMG
  430. WIDTH="201" HEIGHT="283" ALIGN="BOTTOM" BORDER="0"
  431. SRC="img37.gif"
  432. ALT="\includegraphics[height=3in]{img/arc.ps}">
  433. </DIV></TD></TR>
  434. </TABLE>
  435. </DIV><P></P>
  436. <P>
  437. <!-- MATH
  438. \begin{displaymath}
  439. \text{Arc length} = (r_2-wx)(\frac{\pi}{2}-\eta)
  440. \end{displaymath}
  441. -->
  442. <P></P><DIV ALIGN="CENTER">
  443. Arc length<IMG
  444. WIDTH="154" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
  445. SRC="img38.gif"
  446. ALT="$\displaystyle = (r_2-wx)(\frac{\pi}{2}-\eta)$">
  447. </DIV><P></P>
  448. <P>
  449. <!-- MATH
  450. \begin{displaymath}
  451. x = \frac{r_2-wx}{\tan{\eta}}
  452. \end{displaymath}
  453. -->
  454. <P></P><DIV ALIGN="CENTER">
  455. <IMG
  456. WIDTH="101" HEIGHT="51" ALIGN="MIDDLE" BORDER="0"
  457. SRC="img39.gif"
  458. ALT="$\displaystyle x = \frac{r_2-wx}{\tan{\eta}}$">
  459. </DIV><P></P>
  460. <P>
  461. We have now the complete expression of the perimeter of the star as a
  462. function of web burned (<IMG
  463. WIDTH="25" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  464. SRC="img13.gif"
  465. ALT="$ w_x$">) in the zone one. This expression is
  466. valid for <!-- MATH
  467. $0 < w_x < r_2$
  468. -->
  469. <IMG
  470. WIDTH="96" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  471. SRC="img40.gif"
  472. ALT="$ 0 &lt; w_x &lt; r_2$">.
  473. <P>
  474. <P></P>
  475. <DIV ALIGN="CENTER"><!-- MATH
  476. \begin{equation}
  477. \begin{split}
  478. \frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) +
  479. (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\
  480. & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}
  481. + (r_2-w_x)(\frac{\pi}{2}-\eta) \\
  482. & \quad - (r_2-wx)\tan{(\frac{\pi}{2}-\eta)}\\
  483. &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) +
  484. (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\
  485. & \quad - (r_1+r_2)\tan{(\frac{\pi}{2}-\eta)}
  486. + (r_2-w_x)(\frac{\pi}{2}-\eta)\\
  487. \end{split}
  488. \end{equation}
  489. -->
  490. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  491. <TR VALIGN="MIDDLE">
  492. <TD NOWRAP ALIGN="CENTER"><IMG
  493. WIDTH="473" HEIGHT="204" BORDER="0"
  494. SRC="img41.gif"
  495. ALT="\begin{displaymath}\begin{split}\frac{S}{2N} &amp;= (R-w+w_x)(\frac{\pi}{N} - \varep...
  496. ...c{\pi}{2}-\eta)} + (r_2-w_x)(\frac{\pi}{2}-\eta)\\ \end{split}\end{displaymath}"></TD>
  497. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  498. (2)</TD></TR>
  499. </TABLE></DIV>
  500. <BR CLEAR="ALL"><P></P>
  501. <P>
  502. We could now determined the first derivative of this expression to
  503. evaluate if it is progressive, regressive or neutral.
  504. <P>
  505. <P></P>
  506. <DIV ALIGN="CENTER"><!-- MATH
  507. \begin{equation}
  508. \frac{\delta S}{\delta w_x} = 2N\left[ \frac{\pi}{N} - \varepsilon + a -
  509. \frac{\pi}{2} + \eta \right]
  510. \end{equation}
  511. -->
  512. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  513. <TR VALIGN="MIDDLE">
  514. <TD NOWRAP ALIGN="CENTER"><IMG
  515. WIDTH="251" HEIGHT="56" ALIGN="MIDDLE" BORDER="0"
  516. SRC="img42.gif"
  517. ALT="$\displaystyle \frac{\delta S}{\delta w_x} = 2N\left[ \frac{\pi}{N} - \varepsilon + a - \frac{\pi}{2} + \eta \right]$"></TD>
  518. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  519. (3)</TD></TR>
  520. </TABLE></DIV>
  521. <BR CLEAR="ALL"><P></P>
  522. <P>
  523. We could verify that:
  524. <P>
  525. <!-- MATH
  526. \begin{displaymath}
  527. a = \frac{\pi}{2} - \eta + \varepsilon
  528. \end{displaymath}
  529. -->
  530. <P></P><DIV ALIGN="CENTER">
  531. <IMG
  532. WIDTH="111" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
  533. SRC="img43.gif"
  534. ALT="$\displaystyle a = \frac{\pi}{2} - \eta + \varepsilon$">
  535. </DIV><P></P>
  536. <P>
  537. Our expression become:
  538. <P>
  539. <P></P>
  540. <DIV ALIGN="CENTER"><!-- MATH
  541. \begin{equation}
  542. \frac{\delta S}{\delta w_x} = 2\pi
  543. \end{equation}
  544. -->
  545. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  546. <TR VALIGN="MIDDLE">
  547. <TD NOWRAP ALIGN="CENTER"><IMG
  548. WIDTH="80" HEIGHT="56" ALIGN="MIDDLE" BORDER="0"
  549. SRC="img44.gif"
  550. ALT="$\displaystyle \frac{\delta S}{\delta w_x} = 2\pi$"></TD>
  551. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  552. (4)</TD></TR>
  553. </TABLE></DIV>
  554. <BR CLEAR="ALL"><P></P>
  555. <P>
  556. The perimeter in zone 1 will always be progressive. So, it is
  557. important to minimize the radius <IMG
  558. WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  559. SRC="img2.gif"
  560. ALT="$ r_2$"> in order to switch as fast as
  561. possible to the zone 2.
  562. <P>
  563. <H2><A NAME="SECTION00042000000000000000">
  564. Zone 2</A>
  565. </H2>
  566. <P>
  567. The expression for the perimeter in the second zone is almost the
  568. same as in the zone one. The difference is that the radius <IMG
  569. WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  570. SRC="img2.gif"
  571. ALT="$ r_2$"> had
  572. vanish and the expression reduce to a simpler one:
  573. <P>
  574. <P></P>
  575. <DIV ALIGN="CENTER"><!-- MATH
  576. \begin{equation}
  577. \begin{split}
  578. \frac{S}{2N} &= (R-w+w_x)(\frac{\pi}{N} - \varepsilon) +
  579. (r_1+w_x)a+(R-w-r_1)\frac{\sin{\varepsilon}}{\sin{\eta}}\\
  580. & \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\
  581. \end{split}
  582. \end{equation}
  583. -->
  584. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  585. <TR VALIGN="MIDDLE">
  586. <TD NOWRAP ALIGN="CENTER"><IMG
  587. WIDTH="473" HEIGHT="83" BORDER="0"
  588. SRC="img45.gif"
  589. ALT="\begin{displaymath}\begin{split}\frac{S}{2N} &amp;= (R-w+w_x)(\frac{\pi}{N} - \varep...
  590. ...\ &amp; \quad - (r_1+w_x)\tan{(\frac{\pi}{2}-\eta)}\\ \end{split}\end{displaymath}"></TD>
  591. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  592. (5)</TD></TR>
  593. </TABLE></DIV>
  594. <BR CLEAR="ALL"><P></P>
  595. <P>
  596. The derivative of this expression is:
  597. <P>
  598. <P></P>
  599. <DIV ALIGN="CENTER"><!-- MATH
  600. \begin{equation}
  601. \begin{split}
  602. \frac{\delta S}{\delta w_x} &= 2N\left[ \frac{\pi}{N} -\varepsilon +
  603. a - \tan{(\frac{\pi}{2} - \eta)} \right]\\
  604. &= 2N\left[ \frac{\pi}{2} - \eta +
  605. \frac{\pi}{N} - \tan{(\frac{\pi}{2}
  606. - \eta)} \right]\\
  607. \end{split}
  608. \end{equation}
  609. -->
  610. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  611. <TR VALIGN="MIDDLE">
  612. <TD NOWRAP ALIGN="CENTER"><IMG
  613. WIDTH="289" HEIGHT="83" BORDER="0"
  614. SRC="img46.gif"
  615. ALT="\begin{displaymath}\begin{split}\frac{\delta S}{\delta w_x} &amp;= 2N\left[ \frac{\p...
  616. ...c{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)} \right]\\ \end{split}\end{displaymath}"></TD>
  617. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  618. (6)</TD></TR>
  619. </TABLE></DIV>
  620. <BR CLEAR="ALL"><P></P>
  621. <P>
  622. As we could see in this expression, the progressivity in zone 2 is
  623. determined by the angle <IMG
  624. WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  625. SRC="img47.gif"
  626. ALT="$ \eta$"> and by the number of star point
  627. <IMG
  628. WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
  629. SRC="img48.gif"
  630. ALT="$ N$">. It is independant of the angle <!-- MATH
  631. $\varepsilon$
  632. -->
  633. <IMG
  634. WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  635. SRC="img49.gif"
  636. ALT="$ \varepsilon$">.
  637. <P>
  638. The zone 2 will be predominant during the motor burn time and we
  639. would like to provide neutrallity in this zone. Neutrality is obtain
  640. when the derivative of the perimeter is equal to zero. This lead to
  641. the following equation:
  642. <P>
  643. <P></P>
  644. <DIV ALIGN="CENTER"><!-- MATH
  645. \begin{equation}
  646. \frac{\delta S}{\delta w_x} = 0 = \frac{\pi}{2} - \eta +
  647. \frac{\pi}{N} - \tan{(\frac{\pi}{2}
  648. - \eta)}
  649. \end{equation}
  650. -->
  651. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  652. <TR VALIGN="MIDDLE">
  653. <TD NOWRAP ALIGN="CENTER"><IMG
  654. WIDTH="287" HEIGHT="56" ALIGN="MIDDLE" BORDER="0"
  655. SRC="img50.gif"
  656. ALT="$\displaystyle \frac{\delta S}{\delta w_x} = 0 = \frac{\pi}{2} - \eta + \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)}$"></TD>
  657. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  658. (7)</TD></TR>
  659. </TABLE></DIV>
  660. <BR CLEAR="ALL"><P></P>
  661. <P>
  662. Which reduce to the following implicit equation of <IMG
  663. WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  664. SRC="img47.gif"
  665. ALT="$ \eta$"> as a
  666. function of <IMG
  667. WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
  668. SRC="img48.gif"
  669. ALT="$ N$">:
  670. <P>
  671. <P></P>
  672. <DIV ALIGN="CENTER"><!-- MATH
  673. \begin{equation}
  674. \eta = \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)} + \frac{\pi}{2}
  675. \end{equation}
  676. -->
  677. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  678. <TR VALIGN="MIDDLE">
  679. <TD NOWRAP ALIGN="CENTER"><IMG
  680. WIDTH="200" HEIGHT="46" ALIGN="MIDDLE" BORDER="0"
  681. SRC="img51.gif"
  682. ALT="$\displaystyle \eta = \frac{\pi}{N} - \tan{(\frac{\pi}{2} - \eta)} + \frac{\pi}{2}$"></TD>
  683. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  684. (8)</TD></TR>
  685. </TABLE></DIV>
  686. <BR CLEAR="ALL"><P></P>
  687. <P>
  688. Solution of this equation give values of the angle <IMG
  689. WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  690. SRC="img47.gif"
  691. ALT="$ \eta$"> to obtain
  692. neutrality in zone 2 as a function of the number of star points.
  693. <P>
  694. <DIV ALIGN="CENTER">
  695. <TABLE CELLPADDING=3 BORDER="1">
  696. <TR><TD ALIGN="CENTER"><IMG
  697. WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
  698. SRC="img48.gif"
  699. ALT="$ N$"></TD>
  700. <TD ALIGN="CENTER"><IMG
  701. WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  702. SRC="img47.gif"
  703. ALT="$ \eta$"> (deg)</TD>
  704. <TD ALIGN="CENTER"><IMG
  705. WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  706. SRC="img52.gif"
  707. ALT="$ \pi/N$"> (deg)</TD>
  708. </TR>
  709. <TR><TD ALIGN="CENTER">3</TD>
  710. <TD ALIGN="CENTER">24.55</TD>
  711. <TD ALIGN="CENTER">60.00</TD>
  712. </TR>
  713. <TR><TD ALIGN="CENTER">4</TD>
  714. <TD ALIGN="CENTER">28.22</TD>
  715. <TD ALIGN="CENTER">45.00</TD>
  716. </TR>
  717. <TR><TD ALIGN="CENTER">5</TD>
  718. <TD ALIGN="CENTER">31.13</TD>
  719. <TD ALIGN="CENTER">36.00</TD>
  720. </TR>
  721. <TR><TD ALIGN="CENTER">6</TD>
  722. <TD ALIGN="CENTER">33.53</TD>
  723. <TD ALIGN="CENTER">30.00</TD>
  724. </TR>
  725. <TR><TD ALIGN="CENTER">7</TD>
  726. <TD ALIGN="CENTER">35.56</TD>
  727. <TD ALIGN="CENTER">25.71</TD>
  728. </TR>
  729. <TR><TD ALIGN="CENTER">8</TD>
  730. <TD ALIGN="CENTER">37.31</TD>
  731. <TD ALIGN="CENTER">22.50</TD>
  732. </TR>
  733. <TR><TD ALIGN="CENTER">9</TD>
  734. <TD ALIGN="CENTER">38.84</TD>
  735. <TD ALIGN="CENTER">20.00</TD>
  736. </TR>
  737. </TABLE>
  738. </DIV>
  739. <P>
  740. It is important to note that when the angle <!-- MATH
  741. $\eta < \pi/N$
  742. -->
  743. <IMG
  744. WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  745. SRC="img53.gif"
  746. ALT="$ \eta &lt; \pi/N$">, a secant
  747. fillet <!-- MATH
  748. $\varepsilon < \pi/N$
  749. -->
  750. <IMG
  751. WIDTH="70" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  752. SRC="img54.gif"
  753. ALT="$ \varepsilon &lt; \pi/N$"> will be necessary to prevent star point
  754. from overlapping. In general, <!-- MATH
  755. $\varepsilon$
  756. -->
  757. <IMG
  758. WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  759. SRC="img49.gif"
  760. ALT="$ \varepsilon$"> should always be smaller
  761. that <IMG
  762. WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  763. SRC="img52.gif"
  764. ALT="$ \pi/N$">.
  765. <P>
  766. <H2><A NAME="SECTION00043000000000000000">
  767. Zone 3</A>
  768. </H2>
  769. <P>
  770. The perimeter in the zone 3 begin when <IMG
  771. WIDTH="71" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  772. SRC="img55.gif"
  773. ALT="$ w_x = Y*$">. The angle <IMG
  774. WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  775. SRC="img17.gif"
  776. ALT="$ a$">
  777. become progressivly smaller when propellant burned. Perimeter could
  778. be expressed like this:
  779. <P>
  780. <P></P>
  781. <DIV ALIGN="CENTER"><!-- MATH
  782. \begin{equation}
  783. \frac{S}{2N} = (R-w+w_x)(\frac{\pi}{N}-\varepsilon) +
  784. (r_1+w_x)\left[ \varepsilon +
  785. \arcsin{(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}}) \right]
  786. \end{equation}
  787. -->
  788. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  789. <TR VALIGN="MIDDLE">
  790. <TD NOWRAP ALIGN="CENTER"><IMG
  791. WIDTH="550" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
  792. SRC="img56.gif"
  793. ALT="$\displaystyle \frac{S}{2N} = (R-w+w_x)(\frac{\pi}{N}-\varepsilon) + (r_1+w_x)\left[ \varepsilon + \arcsin{(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}}) \right]$"></TD>
  794. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  795. (9)</TD></TR>
  796. </TABLE></DIV>
  797. <BR CLEAR="ALL"><P></P>
  798. <P>
  799. The derivative of this expression become:
  800. <P>
  801. <P></P>
  802. <DIV ALIGN="CENTER"><!-- MATH
  803. \begin{equation}
  804. \begin{split}
  805. \frac{\delta S}{\delta w_x} &= 2N \biggl[ \frac{\pi}{N} +
  806. \arcsin{\biggl(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}\biggr)} - \\
  807. &\quad \frac{w_x(R-w-r_1)\sin{\varepsilon}}{(r_1+w_x)^2\sqrt{1-\frac{(R-w-r_1)^2\sin^2{\varepsilon}}{(r_1+w_x)^2}}} \biggr]\\
  808. \end{split}
  809. \end{equation}
  810. -->
  811. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  812. <TR VALIGN="MIDDLE">
  813. <TD NOWRAP ALIGN="CENTER"><IMG
  814. WIDTH="339" HEIGHT="110" BORDER="0"
  815. SRC="img57.gif"
  816. ALT="\begin{displaymath}\begin{split}\frac{\delta S}{\delta w_x} &amp;= 2N \biggl[ \frac{...
  817. ..._1)^2\sin^2{\varepsilon}}{(r_1+w_x)^2}}} \biggr]\\ \end{split}\end{displaymath}"></TD>
  818. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  819. (10)</TD></TR>
  820. </TABLE></DIV>
  821. <BR CLEAR="ALL"><P></P>
  822. <P>
  823. It could be demonstrate that the perimeter is progressive in this
  824. section. It would be interesting to eliminate the zone 3 in order to
  825. keep neutrality as long as possible.
  826. <P>
  827. The condition for the elimination of zone 3 is:
  828. <P>
  829. <P></P>
  830. <DIV ALIGN="CENTER"><!-- MATH
  831. \begin{equation}
  832. Y* = (R-w-r_1)\frac{\sin{\varepsilon}}{\cos{\eta}} - r_1 = w
  833. \end{equation}
  834. -->
  835. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  836. <TR VALIGN="MIDDLE">
  837. <TD NOWRAP ALIGN="CENTER"><IMG
  838. WIDTH="260" HEIGHT="55" ALIGN="MIDDLE" BORDER="0"
  839. SRC="img58.gif"
  840. ALT="$\displaystyle Y* = (R-w-r_1)\frac{\sin{\varepsilon}}{\cos{\eta}} - r_1 = w$"></TD>
  841. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  842. (11)</TD></TR>
  843. </TABLE></DIV>
  844. <BR CLEAR="ALL"><P></P>
  845. <P>
  846. This equation reduce to:
  847. <P>
  848. <P></P>
  849. <DIV ALIGN="CENTER"><!-- MATH
  850. \begin{equation}
  851. \sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}
  852. \end{equation}
  853. -->
  854. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  855. <TR VALIGN="MIDDLE">
  856. <TD NOWRAP ALIGN="CENTER"><IMG
  857. WIDTH="187" HEIGHT="51" ALIGN="MIDDLE" BORDER="0"
  858. SRC="img59.gif"
  859. ALT="$\displaystyle \sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}$"></TD>
  860. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  861. (12)</TD></TR>
  862. </TABLE></DIV>
  863. <BR CLEAR="ALL"><P></P>
  864. <P>
  865. Now, the angle <!-- MATH
  866. $\varepsilon$
  867. -->
  868. <IMG
  869. WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  870. SRC="img49.gif"
  871. ALT="$ \varepsilon$"> is determine by the web thickness <IMG
  872. WIDTH="17" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  873. SRC="img60.gif"
  874. ALT="$ w$">,
  875. the radius <IMG
  876. WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  877. SRC="img14.gif"
  878. ALT="$ r_1$"> and the angle <IMG
  879. WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  880. SRC="img47.gif"
  881. ALT="$ \eta$">. As <IMG
  882. WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  883. SRC="img47.gif"
  884. ALT="$ \eta$"> was determine by
  885. the number of star points <IMG
  886. WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
  887. SRC="img48.gif"
  888. ALT="$ N$"> and the radius may be dictate by
  889. technical decision, the web thickness <IMG
  890. WIDTH="17" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  891. SRC="img60.gif"
  892. ALT="$ w$"> will determine
  893. <!-- MATH
  894. $\varepsilon$
  895. -->
  896. <IMG
  897. WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  898. SRC="img49.gif"
  899. ALT="$ \varepsilon$">.
  900. <P>
  901. <H2><A NAME="SECTION00044000000000000000">
  902. Zone 4</A>
  903. </H2>
  904. <P>
  905. The analytical solution of the perimeter in the zone 4 could be
  906. found with the help of the cosinus law:
  907. <P>
  908. <P></P>
  909. <DIV ALIGN="CENTER"><!-- MATH
  910. \begin{equation*}
  911. c^2 = a^2 + b^2 - 2ab\cos{\theta}
  912. \end{equation*}
  913. -->
  914. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  915. <TR VALIGN="MIDDLE">
  916. <TD NOWRAP ALIGN="CENTER"><IMG
  917. WIDTH="180" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
  918. SRC="img61.gif"
  919. ALT="$\displaystyle c^2 = a^2 + b^2 - 2ab\cos{\theta}$"></TD>
  920. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  921. &nbsp;&nbsp;&nbsp;</TD></TR>
  922. </TABLE></DIV>
  923. <BR CLEAR="ALL"><P></P>
  924. <P>
  925. The perimeter is then:
  926. <P></P>
  927. <DIV ALIGN="CENTER"><!-- MATH
  928. \begin{equation}
  929. \begin{split}
  930. \frac{S}{2N} = (r_1+w_x) \biggl[ & \varepsilon +
  931. \arcsin{\biggl(\frac{R-w-r_1}{r_1+w_x}\sin{\varepsilon}\biggr)}
  932. - \pi\\
  933. & \quad + \arccos{\biggl(\frac{(r_1+w_x)^2+(R-r_1-w)^2-R^2}{2(r_1+w_x)(R-r_1-w)}\biggr)}
  934. \biggr]\\
  935. \end{split}
  936. \end{equation}
  937. -->
  938. <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
  939. <TR VALIGN="MIDDLE">
  940. <TD NOWRAP ALIGN="CENTER"><IMG
  941. WIDTH="501" HEIGHT="98" BORDER="0"
  942. SRC="img62.gif"
  943. ALT="\begin{displaymath}\begin{split}\frac{S}{2N} = (r_1+w_x) \biggl[ &amp; \varepsilon +...
  944. ...1-w)^2-R^2}{2(r_1+w_x)(R-r_1-w)}\biggr)} \biggr]\\ \end{split}\end{displaymath}"></TD>
  945. <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
  946. (13)</TD></TR>
  947. </TABLE></DIV>
  948. <BR CLEAR="ALL"><P></P>
  949. <P>
  950. <H1><A NAME="SECTION00050000000000000000">
  951. Design example</A>
  952. </H1>
  953. <P>
  954. In this section, a star configuration will be design with the
  955. theory developp in the previous sections for a motor of <IMG
  956. WIDTH="47" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  957. SRC="img63.gif"
  958. ALT="$ 3 inch$">
  959. internal diameter.
  960. <P>
  961. The goal is to have a perimeter that will remain as constant as
  962. possible to mainatin neutrality. It will also be interesting to
  963. minimize the number of star points in order to reduce the difficulty
  964. to cast the propellant. We could also try to optimize the volumetric
  965. loading.
  966. <P>
  967. First of all, we could determine the number of star points. In order
  968. to maximize the quantity of matter, the angle <!-- MATH
  969. $\varepsilon$
  970. -->
  971. <IMG
  972. WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  973. SRC="img49.gif"
  974. ALT="$ \varepsilon$"> should
  975. be equal to <IMG
  976. WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  977. SRC="img52.gif"
  978. ALT="$ \pi/N$">. In order to obtain this condition, the angle
  979. <IMG
  980. WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  981. SRC="img47.gif"
  982. ALT="$ \eta$"> should be larger than <IMG
  983. WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  984. SRC="img52.gif"
  985. ALT="$ \pi/N$">.
  986. <P>
  987. If we refer to the table of the angle <IMG
  988. WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  989. SRC="img47.gif"
  990. ALT="$ \eta$"> in function of <IMG
  991. WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
  992. SRC="img48.gif"
  993. ALT="$ N$">, to
  994. obtain neutrality in zone 2, we must choose <IMG
  995. WIDTH="52" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  996. SRC="img64.gif"
  997. ALT="$ N=6$"> to have <!-- MATH
  998. $\eta >
  999. \pi/N$
  1000. -->
  1001. <IMG
  1002. WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  1003. SRC="img65.gif"
  1004. ALT="$ \eta &gt;
  1005. \pi/N$">.
  1006. <P>
  1007. Three conditions are now determine:
  1008. <P>
  1009. <!-- MATH
  1010. \begin{displaymath}
  1011. N = 6
  1012. \end{displaymath}
  1013. -->
  1014. <P></P><DIV ALIGN="CENTER">
  1015. <IMG
  1016. WIDTH="52" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  1017. SRC="img66.gif"
  1018. ALT="$\displaystyle N = 6$">
  1019. </DIV><P></P>
  1020. <!-- MATH
  1021. \begin{displaymath}
  1022. \eta = 33.53 deg
  1023. \end{displaymath}
  1024. -->
  1025. <P></P><DIV ALIGN="CENTER">
  1026. <IMG
  1027. WIDTH="103" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  1028. SRC="img67.gif"
  1029. ALT="$\displaystyle \eta = 33.53 deg$">
  1030. </DIV><P></P>
  1031. <!-- MATH
  1032. \begin{displaymath}
  1033. \varepsilon = 30 deg
  1034. \end{displaymath}
  1035. -->
  1036. <P></P><DIV ALIGN="CENTER">
  1037. <IMG
  1038. WIDTH="79" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
  1039. SRC="img68.gif"
  1040. ALT="$\displaystyle \varepsilon = 30 deg$">
  1041. </DIV><P></P>
  1042. <P>
  1043. We must now found the web thickness <IMG
  1044. WIDTH="17" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  1045. SRC="img60.gif"
  1046. ALT="$ w$"> and radius <IMG
  1047. WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  1048. SRC="img14.gif"
  1049. ALT="$ r_1$"> that fit
  1050. the conditions. A radius <!-- MATH
  1051. $r_1 = 1/16 in$
  1052. -->
  1053. <IMG
  1054. WIDTH="95" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
  1055. SRC="img69.gif"
  1056. ALT="$ r_1 = 1/16 in$"> is reasonable technically.
  1057. <P>
  1058. The equation to be solve is the following:
  1059. <P>
  1060. <!-- MATH
  1061. \begin{displaymath}
  1062. sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}
  1063. \end{displaymath}
  1064. -->
  1065. <P></P><DIV ALIGN="CENTER">
  1066. <IMG
  1067. WIDTH="187" HEIGHT="51" ALIGN="MIDDLE" BORDER="0"
  1068. SRC="img59.gif"
  1069. ALT="$\displaystyle \sin{\varepsilon} = \frac{w+r_1}{R-w-r_1}\cos{\eta}$">
  1070. </DIV><P></P>
  1071. <P>
  1072. The value of <IMG
  1073. WIDTH="17" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
  1074. SRC="img60.gif"
  1075. ALT="$ w$"> that solve this equation is:
  1076. <P>
  1077. <!-- MATH
  1078. \begin{displaymath}
  1079. w = 0.500
  1080. \end{displaymath}
  1081. -->
  1082. <P></P><DIV ALIGN="CENTER">
  1083. <IMG
  1084. WIDTH="80" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
  1085. SRC="img70.gif"
  1086. ALT="$\displaystyle w = 0.500$">
  1087. </DIV><P></P>
  1088. <P>
  1089. The seven independant variable are now fixed. The resulting shape
  1090. could be seen in figure <A HREF="star.html#res">5</A>.
  1091. <P>
  1092. <P></P>
  1093. <DIV ALIGN="CENTER"><A NAME="res"></A><A NAME="253"></A>
  1094. <TABLE>
  1095. <CAPTION ALIGN="BOTTOM"><STRONG>Figure 5:</STRONG>
  1096. Resulting star configuration for the 3 inch motor.</CAPTION>
  1097. <TR><TD><DIV ALIGN="CENTER">
  1098. <!-- MATH
  1099. $\includegraphics[]{img/res.ps}$
  1100. -->
  1101. <IMG
  1102. WIDTH="348" HEIGHT="348" ALIGN="BOTTOM" BORDER="0"
  1103. SRC="img71.gif"
  1104. ALT="\includegraphics[]{img/res.ps}">
  1105. </DIV></TD></TR>
  1106. </TABLE>
  1107. </DIV><P></P>
  1108. <P>
  1109. With the functions developp in the report, the evolution of the
  1110. perimeter as a function of the web burned could be plot.
  1111. <P>
  1112. <P></P>
  1113. <DIV ALIGN="CENTER"><A NAME="grah"></A><A NAME="260"></A>
  1114. <TABLE>
  1115. <CAPTION ALIGN="BOTTOM"><STRONG>Figure 6:</STRONG>
  1116. Graphic of the perimeter as a function of web burned.</CAPTION>
  1117. <TR><TD><DIV ALIGN="CENTER">
  1118. <!-- MATH
  1119. $\includegraphics[height=4in]{img/perimeter.ps}$
  1120. -->
  1121. <IMG
  1122. WIDTH="628" HEIGHT="447" ALIGN="BOTTOM" BORDER="0"
  1123. SRC="img72.gif"
  1124. ALT="\includegraphics[height=4in]{img/perimeter.ps}">
  1125. </DIV></TD></TR>
  1126. </TABLE>
  1127. </DIV><P></P>
  1128. <P>
  1129. <H1><A NAME="SECTION00060000000000000000">
  1130. conclusion</A>
  1131. </H1>
  1132. <P>
  1133. The star configuration offer the possibility to design rocket motor
  1134. that works at almost constant pressure. It is then possible to
  1135. optimize on case thickness and throat diameter in order to obtain the best
  1136. performance.
  1137. <P>
  1138. <H2><A NAME="SECTION00070000000000000000">
  1139. Bibliography</A>
  1140. </H2><DL COMPACT><DD><P></P><DT><A NAME="nasa">1</A>
  1141. <DD> NASA SP-8076, <EM>Solid Propellant Grain Design And
  1142. Internal Ballistics</EM>, March 1972
  1143. </DL>
  1144. <P>
  1145. <H1><A NAME="SECTION00080000000000000000">
  1146. About this document ...</A>
  1147. </H1>
  1148. <STRONG>Burning analysis of star configuration</STRONG><P>
  1149. This document was generated using the
  1150. <A HREF="http://www-texdev.mpce.mq.edu.au/l2h/docs/manual/"><STRONG>LaTeX</STRONG>2<tt>HTML</tt></A> translator Version 99.2beta8 (1.42)
  1151. <P>
  1152. Copyright &#169; 1993, 1994, 1995, 1996,
  1153. <A HREF="http://cbl.leeds.ac.uk/nikos/personal.html">Nikos Drakos</A>,
  1154. Computer Based Learning Unit, University of Leeds.
  1155. <BR>Copyright &#169; 1997, 1998, 1999,
  1156. <A HREF="http://www.maths.mq.edu.au/~ross/">Ross Moore</A>,
  1157. Mathematics Department, Macquarie University, Sydney.
  1158. <P>
  1159. The command line arguments were: <BR>
  1160. <STRONG>latex2html</STRONG> <TT>-white -image_type gif -no_navigation -split 0 -dir html -mkdir star.tex</TT>
  1161. <P>
  1162. The translation was initiated by Antoine Lefebvre on 2001-07-12<BR><HR>
  1163. <ADDRESS>
  1164. Antoine Lefebvre
  1165. 2001-07-12
  1166. </ADDRESS>
  1167. </BODY>
  1168. </HTML>